File size: 21,734 Bytes
1b7e88c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
import html
import json
import os
import queue
import shutil
import sys
import threading
import uuid
from pathlib import Path
from time import sleep
os.environ['GRADIO_TEMP_DIR'] = os.getcwd()
video_root_path = os.path.join(os.getcwd(), 'video_root')
os.makedirs(video_root_path, exist_ok=True)
from omagent_core.clients.devices.app.callback import AppCallback
from omagent_core.clients.devices.app.input import AppInput
from omagent_core.clients.devices.app.schemas import ContentStatus, MessageType
from omagent_core.engine.automator.task_handler import TaskHandler
from omagent_core.engine.http.models.workflow_status import terminal_status
from omagent_core.engine.workflow.conductor_workflow import ConductorWorkflow
from omagent_core.services.connectors.redis import RedisConnector
from omagent_core.utils.build import build_from_file
from omagent_core.utils.container import container
from omagent_core.utils.logger import logging
from omagent_core.utils.registry import registry
registry.import_module()
container.register_connector(name="redis_stream_client", connector=RedisConnector)
# container.register_stm(stm='RedisSTM')
container.register_callback(callback=AppCallback)
container.register_input(input=AppInput)
import gradio as gr
class WebpageClient:
def __init__(
self,
interactor: ConductorWorkflow = None,
processor: ConductorWorkflow = None,
config_path: str = "./config",
workers: list = [],
) -> None:
self._interactor = interactor
self._processor = processor
self._config_path = config_path
self._workers = workers
self._workflow_instance_id = None
self._worker_config = build_from_file(self._config_path)
self._task_to_domain = {}
self._incomplete_message = ""
self._custom_css = """
#OmAgent {
height: 100vh !important;
max-height: calc(100vh - 190px) !important;
overflow-y: auto;
}
.running-message {
margin: 0;
padding: 2px 4px;
white-space: pre-wrap;
word-wrap: break-word;
font-family: inherit;
}
/* Remove the background and border of the message box */
.message-wrap {
background: none !important;
border: none !important;
padding: 0 !important;
margin: 0 !important;
}
/* Remove the bubble style of the running message */
.message:has(.running-message) {
background: none !important;
border: none !important;
padding: 0 !important;
box-shadow: none !important;
}
"""
self.workflow_instance_id = str(uuid.uuid4())
self.processor_instance_id = str(uuid.uuid4())
worker_config = build_from_file(self._config_path)
self.initialization(workers, worker_config)
def initialization(self, workers, worker_config):
self.workers = {}
for worker in workers:
worker.workflow_instance_id = self.workflow_instance_id
self.workers[type(worker).__name__] = worker
for config in worker_config:
worker_cls = registry.get_worker(config['name'])
worker = worker_cls(**config)
worker.workflow_instance_id = self.workflow_instance_id
self.workers[config['name']] = worker
def gradio_app(self):
with gr.Blocks() as demo:
def load_local_video() -> dict:
result = {}
for root, _, files in os.walk(video_root_path):
for file in filter(lambda x: x.split('.')[-1] in (
'mp4', 'avi', 'mov', 'wmv', 'flv', 'mkv', 'webm', 'm4v'), files):
file_obs_path = os.path.join(root, file)
result[Path(file_obs_path).name] = file_obs_path
return result
video_dict = load_local_video()
current_video = None
state = gr.State(value={
'video_dict': video_dict,
'current_video': current_video
})
with gr.Row():
with gr.Column():
with gr.Column():
def display_video_map(video_title):
# change display video
video_path = state.value.get('video_dict', {}).get(video_title)
exception_queue = queue.Queue()
workflow_input = {'video_path': video_path}
processor_result = None
def run_workflow(workflow_input):
nonlocal processor_result
try:
processor_result = self._processor.start_workflow_with_input(
workflow_input=workflow_input, workers=self.workers
)
except Exception as e:
exception_queue.put(e) # add exception to queue
logging.error(f"Error starting workflow: {e}")
raise e
workflow_thread = threading.Thread(target=run_workflow, args=(workflow_input,), daemon=True)
workflow_thread.start()
processor_workflow_instance_id = self.processor_instance_id
while True:
status = self._processor.get_workflow(
workflow_id=processor_workflow_instance_id).status
if status in terminal_status:
break
sleep(1)
state.value['video_dict'] = load_local_video()
state.value.update(current_video=video_path)
state.value.update(processor_result=processor_result)
state.value.update(processor_workflow_instance_id=processor_workflow_instance_id)
return video_path, state
select_video = gr.Dropdown(
state.value['video_dict'].keys(),
value=None
)
display_video = gr.Video(
state.value['current_video'],
)
select_video.change(
fn=display_video_map,
inputs=[select_video],
outputs=[display_video, state]
)
with gr.Column():
chatbot = gr.Chatbot(
type="messages",
)
chat_input = gr.Textbox(
interactive=True,
placeholder="Enter message...",
show_label=False,
)
chat_msg = chat_input.submit(
self.add_message,
[chatbot, chat_input, state],
[chatbot, chat_input]
)
bot_msg = chat_msg.then(
self.bot, (chatbot, state), chatbot, api_name="bot_response"
)
bot_msg.then(
lambda: gr.Textbox(interactive=True), None, [chat_input]
)
demo.launch(
max_file_size='1gb'
)
def start_interactor(self):
try:
self.gradio_app()
except KeyboardInterrupt:
logging.info("\nDetected Ctrl+C, stopping workflow...")
if self._workflow_instance_id is not None:
self._interactor._executor.terminate(
workflow_id=self._workflow_instance_id
)
raise
def stop_interactor(self):
# self._task_handler_interactor.stop_processes()
print("stop_interactor")
sys.exit(0)
def start_processor(self):
self._task_handler_processor = TaskHandler(
worker_config=self._worker_config, workers=self._workers, task_to_domain=self._task_to_domain
)
self._task_handler_processor.start_processes()
try:
with gr.Blocks(title="OmAgent", css=self._custom_css) as chat_interface:
chatbot = gr.Chatbot(
elem_id="OmAgent",
bubble_full_width=False,
type="messages",
height="100%",
)
chat_input = gr.MultimodalTextbox(
interactive=True,
file_count="multiple",
placeholder="Enter message or upload file...",
show_label=False,
)
chat_msg = chat_input.submit(
self.add_processor_message,
[chatbot, chat_input],
[chatbot, chat_input],
)
bot_msg = chat_msg.then(
self.processor_bot, chatbot, chatbot, api_name="bot_response"
)
bot_msg.then(
lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]
)
chat_interface.launch(server_port=7861)
except KeyboardInterrupt:
logging.info("\nDetected Ctrl+C, stopping workflow...")
if self._workflow_instance_id is not None:
self._processor._executor.terminate(
workflow_id=self._workflow_instance_id
)
raise
def stop_processor(self):
self._task_handler_processor.stop_processes()
def add_message(self, history, message, state):
if isinstance(state, gr.State):
if state.value.get('current_video') is None:
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": 'Please select a video'})
return history, gr.Textbox(value=None, interactive=False)
else:
if state.get('current_video') is None:
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": 'Please select a video'})
return history, gr.Textbox(value=None, interactive=False)
if self._workflow_instance_id is None:
workflow_input = {
'question': message,
"video_md5": state.value.get('processor_result', {}).get("video_md5"),
"video_path": state.value.get('processor_result', {}).get("video_path"),
"instance_id": state.value.get('processor_result', {}).get("instance_id"),
"processor_workflow_instance_id": state.value.get("processor_workflow_instance_id")
}
exception_queue = queue.Queue()
def run_workflow(workflow_input):
try:
self._interactor.start_workflow_with_input(
workflow_input=workflow_input, workers=self.workers
)
except Exception as e:
exception_queue.put(e) # add exception to queue
logging.error(f"Error starting workflow: {e}")
raise e
workflow_thread = threading.Thread(target=run_workflow, args=(workflow_input,),daemon=True)
workflow_thread.start()
self._workflow_instance_id = self.workflow_instance_id
contents = []
history.append({"role": "user", "content": message})
contents.append({"data": message, "type": "text"})
result = {
"agent_id": self._workflow_instance_id,
"messages": [{"role": "user", "content": contents}],
"kwargs": {},
}
container.get_connector("redis_stream_client")._client.xadd(
f"{self._workflow_instance_id}_input",
{"payload": json.dumps(result, ensure_ascii=False)},
)
return history, gr.Textbox(value=None, interactive=False)
def add_processor_message(self, history, message):
if self._workflow_instance_id is None:
self._workflow_instance_id = self._processor.start_workflow_with_input(
workflow_input={}, task_to_domain=self._task_to_domain
)
image_items = []
for idx, x in enumerate(message["files"]):
history.append({"role": "user", "content": {"path": x}})
image_items.append(
{"type": "image_url", "resource_id": str(idx), "data": str(x)}
)
result = {"content": image_items}
container.get_connector("redis_stream_client")._client.xadd(
f"image_process", {"payload": json.dumps(result, ensure_ascii=False)}
)
return history, gr.MultimodalTextbox(value=None, interactive=False)
def bot(self, history, state):
if isinstance(state, gr.State):
if state.value.get('current_video') is None:
yield history
return
else:
if state.get('current_video') is None:
yield history
return
stream_name = f"{self._workflow_instance_id}_output"
consumer_name = f"{self._workflow_instance_id}_agent" # consumer name
group_name = "omappagent" # replace with your consumer group name
running_stream_name = f"{self._workflow_instance_id}_running"
self._check_redis_stream_exist(stream_name, group_name)
self._check_redis_stream_exist(running_stream_name, group_name)
while True:
# read running stream
running_messages = self._get_redis_stream_message(
group_name, consumer_name, running_stream_name
)
for stream, message_list in running_messages:
for message_id, message in message_list:
payload_data = self._get_message_payload(message)
if payload_data is None:
continue
progress = html.escape(payload_data.get("progress", ""))
message = html.escape(payload_data.get("message", ""))
formatted_message = (
f'<pre class="running-message">{progress}: {message}</pre>'
)
history.append({"role": "assistant", "content": formatted_message})
yield history
container.get_connector("redis_stream_client")._client.xack(
running_stream_name, group_name, message_id
)
# read output stream
messages = self._get_redis_stream_message(
group_name, consumer_name, stream_name
)
finish_flag = False
for stream, message_list in messages:
for message_id, message in message_list:
incomplete_flag = False
payload_data = self._get_message_payload(message)
if payload_data is None:
continue
if payload_data["content_status"] == ContentStatus.INCOMPLETE.value:
incomplete_flag = True
message_item = payload_data["message"]
if message_item["type"] == MessageType.IMAGE_URL.value:
history.append(
{
"role": "assistant",
"content": {"path": message_item["content"]},
}
)
else:
if incomplete_flag:
self._incomplete_message = (
self._incomplete_message + message_item["content"]
)
if history and history[-1]["role"] == "assistant":
history[-1]["content"] = self._incomplete_message
else:
history.append(
{
"role": "assistant",
"content": self._incomplete_message,
}
)
else:
if self._incomplete_message != "":
self._incomplete_message = (
self._incomplete_message + message_item["content"]
)
if history and history[-1]["role"] == "assistant":
history[-1]["content"] = self._incomplete_message
else:
history.append(
{
"role": "assistant",
"content": self._incomplete_message,
}
)
self._incomplete_message = ""
else:
history.append(
{
"role": "assistant",
"content": message_item["content"],
}
)
yield history
container.get_connector("redis_stream_client")._client.xack(
stream_name, group_name, message_id
)
# check finish flag
if (
"interaction_type" in payload_data
and payload_data["interaction_type"] == 1
):
finish_flag = True
if (
"content_status" in payload_data
and payload_data["content_status"]
== ContentStatus.END_ANSWER.value
):
self._workflow_instance_id = None
finish_flag = True
if finish_flag:
break
sleep(0.01)
def processor_bot(self, history: list):
history.append({"role": "assistant", "content": f"processing..."})
yield history
while True:
status = self._processor.get_workflow(
workflow_id=self._workflow_instance_id
).status
if status in terminal_status:
history.append({"role": "assistant", "content": f"completed"})
yield history
self._workflow_instance_id = None
break
sleep(0.01)
def _get_redis_stream_message(
self, group_name: str, consumer_name: str, stream_name: str
):
messages = container.get_connector("redis_stream_client")._client.xreadgroup(
group_name, consumer_name, {stream_name: ">"}, count=1
)
messages = [
(
stream,
[
(
message_id,
{
k.decode("utf-8"): v.decode("utf-8")
for k, v in message.items()
},
)
for message_id, message in message_list
],
)
for stream, message_list in messages
]
return messages
def _check_redis_stream_exist(self, stream_name: str, group_name: str):
try:
container.get_connector("redis_stream_client")._client.xgroup_create(
stream_name, group_name, id="0", mkstream=True
)
except Exception as e:
logging.debug(f"Consumer group may already exist: {e}")
def _get_message_payload(self, message: dict):
logging.info(f"Received running message: {message}")
payload = message.get("payload")
# check payload data
if not payload:
logging.error("Payload is empty")
return None
try:
payload_data = json.loads(payload)
except json.JSONDecodeError as e:
logging.error(f"Payload is not a valid JSON: {e}")
return None
return payload_data
|