File size: 20,916 Bytes
96ee597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
"""A2S model definition.

Copyright PolyAI Limited.
"""
from typing import Union

import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from einops import rearrange

import constants as c
from modules import masking_logic
from modules.conformer import Conformer
from modules.masking_logic import (State, mask_by_random_topk,
                                   sample_from_logits, state_init)
from utils import load_checkpoint


class Pheme(pl.LightningModule):
    def __init__(self, hp):
        super().__init__()
        self.hp = hp
        self.model = TTSConformer(hp)
        self.cross_entropy = nn.CrossEntropyLoss(
            label_smoothing=self.hp.label_smoothing,
            ignore_index=self.hp.n_codes
        )
        if self.hp.pretrained_path:
            self.load()
        else:
            self.apply(self.init_weights)

        if self.hp.only_inference:
            self.model.eval()

        self.save_hyperparameters()

    def load(self):
        state_dict = load_checkpoint(self.hp.pretrained_path)
        print(f"Parameters loaded from {self.hp.pretrained_path}")
        self.load_state_dict(state_dict, strict=True)

    def init_weights(self, module):
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if module.bias is not None:
                module.bias.data.zero_()
        if isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=0.02)
            module._fill_padding_idx_with_zero()
        elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, nn.Conv1d):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if module.bias is not None:
                module.bias.data.zero_()

    def configure_optimizers(self):
        optimizer_adam = optim.AdamW(
            self.parameters(), lr=self.hp.lr,
            betas=(self.hp.adam_beta1, self.hp.adam_beta2))

        # Learning rate scheduler
        num_training_steps = self.hp.training_step
        num_warmup_steps = self.hp.warmup_step
        num_flat_steps = int(self.hp.optim_flat_percent * num_training_steps)

        def lambda_lr(current_step: int):
            if current_step < num_warmup_steps:
                return float(current_step) / float(max(1, num_warmup_steps))
            elif current_step < (num_warmup_steps + num_flat_steps):
                return 1.0
            return max(
                0.0,
                float(num_training_steps - current_step)
                / float(
                    max(1, num_training_steps - (num_warmup_steps + num_flat_steps))  # noqa
                ),
            )

        scheduler_adam = {
            "scheduler": optim.lr_scheduler.LambdaLR(
                optimizer_adam, lambda_lr),
            "interval": "step",
        }
        return [optimizer_adam], [scheduler_adam]

    def top_k_accuracy(self, y_true, y_pred_probabilities, k):
        _, sorted_indices = torch.sort(y_pred_probabilities, descending=True)

        # Get the top-k predictions
        top_k_indices = sorted_indices[:, :k]
        expanded_y_true = y_true.unsqueeze(1).expand_as(top_k_indices)

        # Check if true labels exist in top-k predictions
        hits = torch.sum(torch.eq(top_k_indices, expanded_y_true))
        accuracy = hits.item() / (len(y_true) + 1e-7)

        return accuracy

    def training_step(self, batch, batch_idx):
        # Sample training level
        rvq_level = torch.randint(
            0, min(self.hp.first_n_lvls, self.hp.n_cluster_groups),(1,)).item()

        target, chosen_tokens, _, _ = self.model(
            batch["tts_quantize_input"], rvq_level, batch["semantic_tokens"],
            batch["quantization_lengths"],
            speaker_emb=batch["speaker"],
            min_seq_length=batch["quantization_lengths"].min().item())

        # Mask targets and labels
        mask = chosen_tokens
        target = target[mask]

        labels = batch["tts_quantize_input"][:, :, rvq_level]
        labels = labels[mask]

        loss = self.cross_entropy(target, labels)
        acc = (target.argmax(-1) == labels).float().mean()
        self.log("train/loss", loss, on_step=True, prog_bar=True)
        self.log("train/acc", acc, on_step=True, prog_bar=True)
        self.log(
            f"train/acc_lvl_{rvq_level}", acc, on_step=True, prog_bar=False)

        return loss

    def validation_step(self, batch, batch_idx, dataloader_idx=0):
        speaker_emb = batch["speaker"]
        acoustic_tokens = batch["tts_quantize_input"]
        semantic_tokens = batch["semantic_tokens"]

        if self.hp.only_inference:
            self.inference(
                acoustic_tokens, semantic_tokens, self.hp.first_n_lvls)
        else:
            rvq_level = torch.randint(
                0, min(self.hp.first_n_lvls, self.hp.n_cluster_groups),(1,)
            ).item()

            # FIXME: edge case
            if len(semantic_tokens.shape) == 3:
                semantic_tokens = rearrange(semantic_tokens, "B 1 T -> B T")

            target, chosen_tokens, _, _ = self.model(
                acoustic_tokens, rvq_level, semantic_tokens,
                torch.tensor([acoustic_tokens.shape[1]]).to(self.device),
                speaker_emb=speaker_emb, 
                min_seq_length=acoustic_tokens.shape[1]
            )

            target = target[chosen_tokens]
            labels = acoustic_tokens[:, :, rvq_level][chosen_tokens]
            loss = self.cross_entropy(target, labels)
            
            acc = (target.argmax(-1) == labels).float().mean()
            acc_5 = self.top_k_accuracy(labels, target, 5)

            self.log(
                f"val/dataset_{dataloader_idx}/loss",
                loss,
                on_epoch=True,
                logger=True,
                add_dataloader_idx=False,
            )
            self.log(
                f"val/dataset_{dataloader_idx}/acc_lvl",
                acc,
                on_epoch=True,
                logger=True,
                add_dataloader_idx=False,
            )
            self.log(
                f"val/dataset_{dataloader_idx}/acc_lvl_{rvq_level}",
                acc,
                on_epoch=True,
                logger=True,
                add_dataloader_idx=False,
            )
            self.log(
                f"val/dataset_{dataloader_idx}/acc_top_5",
                acc_5,
                on_epoch=True,
                logger=True,
                add_dataloader_idx=False,
            )
            self.log(
                f"val/dataset_{dataloader_idx}/acc_top_5_lvl_{rvq_level}",
                acc_5,
                on_epoch=True,
                logger=True,
                add_dataloader_idx=False,
            )

    def compute_stats(self, logits, labels, mask_ratio=0, rvq_level=0):
        acc = (logits.argmax(-1) == labels).float().mean()
        acc_5 = self.top_k_accuracy(labels, logits, 5)
        acc_10 = self.top_k_accuracy(labels, logits, 10)

        idx = torch.randperm(logits.shape[0])
        logits_shuffled = logits[idx]
        random = self.top_k_accuracy(labels, logits_shuffled, 10)
        print(f"Mask ratio: {mask_ratio}, Level {rvq_level}: acc {acc},"
              f"acc 5 {acc_5}, acc 10 {acc_10}, quasi random {random}")


class TTSConformer(pl.LightningModule):
    def __init__(self, hp):
        super().__init__()
        self.hp = hp
        self.padding_id = self.hp.n_codes

        additional_codes = [c.PAD, c.SPKR_1, c.SPKR_2]

        self.embedding = nn.ModuleList(
            [
                nn.Embedding(
                    self.hp.n_codes + len(additional_codes),
                    self.hp.hidden_size,
                    padding_idx=self.padding_id)
                for _ in range(self.hp.n_cluster_groups)
            ]
        )

        # Additional modules
        self.semantic_embedding = nn.Embedding(
            self.hp.n_semantic_codes + len(additional_codes),
            self.hp.hidden_size,
            padding_idx=self.padding_id)

        if self.hp.use_spkr_emb:
            self.spkr_linear = nn.Linear(c.SPKR_EMB_SIZE, self.hp.hidden_size)

        self.conformer = Conformer(
            dim=self.hp.hidden_size,
            num_layers=self.hp.enc_nlayers,
            heads=self.hp.nheads,
            dim_head=64,
            ff_mult=4,  # 512*4=2048
            conv_expansion_factor=2,
            conv_kernel_size=self.hp.depthwise_conv_kernel_size,
            attn_dropout=self.hp.dropout,
            ff_dropout=self.hp.dropout,
            conv_dropout=self.hp.dropout,
            attn_flash=True,
            t5_rel_pos_bias=False
        )

        self.heads = nn.ModuleList(
            [
                nn.Linear(
                    self.hp.hidden_size,
                    self.hp.n_codes + len(additional_codes)
                ) 
                for _ in range(self.hp.n_cluster_groups)
            ]
        )

    def build_mask_from_lengths(self, length, max_len=None):
        max_len = max_len or length.max().item()
        mask = torch.arange(
            max_len, device=length.device)[None, :] >= length[:, None]
        return mask.bool()

    @torch.no_grad()
    def create_mask(
            self, B, T, lengths, mask_ratio=None, start_t=None, 
            min_seq_length=None
    ):
        # 1. Define the random length of condition tokens given the shortest
        # audio in the batch
        if start_t is None:
            start_t = torch.randint(1, min_seq_length - 1, (1,)).item()

        # 2. Mask other tokens - sample different masking levels per
        if mask_ratio is None:
            ratio = torch.rand(1).item()
            mask_ratio = masking_logic.schedule(ratio)

        # Create a random tensor with values between 0 and 1
        random_tensor = torch.rand(
            (B, T - start_t), dtype=torch.float).to(self.device)
        # Create a mask where values less than p are set to True
        initial_mask = random_tensor < mask_ratio
        length_mask = self.build_mask_from_lengths(
            lengths - start_t, T - start_t)
        # we can't pick up tokens past token lengths
        initial_mask = torch.logical_and(initial_mask, ~length_mask)

        # Constrain ratio to always include some samples
        # If all are False let's pick up at least one:
        if torch.sum(initial_mask) == 0:
            choose_steps = torch.randint(low=0, high=(T - start_t), size=(B,))
            initial_mask[torch.arange(B), choose_steps] = torch.tensor(
                True, device=self.device)

        # 3. Add condition tokens containing information
        acoustic_token_mask = torch.cat(
            (torch.full((B, start_t), False, device=self.device), initial_mask),  # noqa
            1
        )

        return acoustic_token_mask, start_t, mask_ratio

    def process_input(
            self, data, lengths, rvq_level, min_seq_length=None,
            mask_ratio=None, start_t=None, acoustic_token_mask=None
    ):
        """
            data: (B,  T, code_level, D)
            rvq_level: int
        """
        B = data.size(0)
        T = data.size(1)
        level_data = data[:, :, rvq_level, :]  # [B, T, C, D] -> [B, T, D]

        # Choose acoustic tokens to mask
        if acoustic_token_mask is None:
            acoustic_token_mask, start_t, mask_ratio = self.create_mask(
                B, T, lengths, mask_ratio=mask_ratio, start_t=start_t,
                min_seq_length=min_seq_length)
            # Remove code information from chosen tokens
            level_data[acoustic_token_mask, :] = 0

        # Embed only lower rvq_level
        lower_code_data = data[:, :, :rvq_level, :].sum(dim=2)

        # Combine with chosen tokens at rvq_level.
        # Note: all tokens at rvq_level+1: will be discarded.
        summed_data = torch.add(lower_code_data, level_data)

        return summed_data, acoustic_token_mask, mask_ratio, start_t

    def forward(
        self, x, code_level, semantic_tokens, lengths,
        speaker_emb=None, min_seq_length=10, mask_ratio=None, start_t=None,
        acoustic_token_mask=None
    ):
        # FIXME: parallelize this
        batch = []
        for lvl, embed in enumerate(self.embedding[:(code_level + 1)]):
            batch.append(embed(x[:, :, lvl]))  # [B T D]

        x = torch.stack(batch, dim=2)  # [B T C D]
        x, acoustic_token_mask, mask_ratio, start_t = self.process_input(
            x, lengths, code_level, min_seq_length=min_seq_length,
            mask_ratio=mask_ratio, start_t=start_t,
            acoustic_token_mask=acoustic_token_mask
        )

        # Add phoneme embeddings
        # Cross attention for all tokens?

        # Add semantic tokens
        # HACK ME
        semantic_emb = self.semantic_embedding(semantic_tokens)
        x = torch.add(x, semantic_emb)
        # FIXME pfb30

        # Merge different modalities
        if self.hp.use_spkr_emb:
            spkr_emb = F.normalize(speaker_emb, dim=-1)
            spkr_emb = self.spkr_linear(
                F.dropout(spkr_emb, self.hp.speaker_embed_dropout)
            )
            x = torch.add(x, spkr_emb)

        output_frames = self.conformer(x, None)

        x = self.heads[code_level](output_frames)

        return x, acoustic_token_mask, mask_ratio, start_t

    @torch.no_grad()
    def inference(
        self, codes, semantic_tokens,
        length: torch.LongTensor, rvq_levels=7,
        mask_ratio=0.99, maskgit_inference=True,
        start_t: Union[torch.LongTensor, None] = None,
        speaker_emb=None, steps=16
    ):
        # Use half of the recording for the conditioning
        if start_t is None:
            start_t = torch.tensor(int((codes.shape[1]) / 2)).long()

        start_t = start_t.item()

        for rvq_level in range(rvq_levels):
            original_codes = torch.clone(codes)
            if rvq_level == 0 and maskgit_inference:
                codes = self.multi_step_inference(
                    original_codes, semantic_tokens, length,
                    start_t=start_t, vamp_filtering=False, 
                    speaker_emb=speaker_emb, steps=16
                )
            else:
                codes = self.one_step_inference(
                    original_codes, semantic_tokens, length,
                    code_level=rvq_level,
                    mask_ratio=mask_ratio, start_t=start_t, 
                    speaker_emb=speaker_emb
                )

            codes = rearrange(codes, 'T C -> 1 T C')

        # Remove any padding left
        codes = rearrange(codes, '1 T C -> 1 C T')
        codes = torch.where(codes >= self.hp.n_codes, 0, codes)
        acoustic_tokens = codes
        semantic_tokens = rearrange(semantic_tokens, 'b c -> b 1 c')
        semantic_tokens = torch.where(
            semantic_tokens >= self.hp.n_codes, 0, semantic_tokens)
        codes = torch.cat([semantic_tokens, acoustic_tokens], dim=1)

        return codes

    @torch.no_grad()
    def one_step_inference(
        self, original_codes, semantic_tokens, lengths, code_level=0, 
        mask_ratio=0.99, start_t=0, inference_setup="argmax", speaker_emb=None
    ):  
        codes = torch.clone(original_codes)
        logits, _, _, _ = self.forward(
            codes, code_level, semantic_tokens, lengths, 
            mask_ratio=mask_ratio, start_t=start_t,
            speaker_emb=speaker_emb, acoustic_token_mask=False)

        if inference_setup == "argmax":
            probs = torch.nn.functional.softmax(logits, dim=-1)
            top_indeces = torch.argmax(probs, dim=-1)

        if inference_setup == "sampling":
            top_indeces = torch.distributions.Categorical(
                logits=logits).sample()

        codes = rearrange(codes, '1 T C -> T C')
        codes[start_t:, code_level] = top_indeces[0, start_t:]

        return codes

    @torch.no_grad()
    def multi_step_inference(
        self, original_codes, semantic_tokens, lengths,
        start_t: torch.LongTensor=None,
        choice_temperature=1.0, start_iter=0,
        steps=16, vamp_filtering=False, speaker_emb=None
    ):
        codes = torch.clone(original_codes)
        code_level = 0
        _, seq_len, _ = original_codes.shape
        mask_token_id = self.padding_id

        # Get true codes for the prompt
        prompt_mask = codes[:, :start_t, code_level]
    
        # Fill up rest with masks
        mask = torch.full(
            (1, seq_len - start_t), mask_token_id, device=self.device) 
        inputs = torch.cat((prompt_mask, mask), 1)

        num_mask_tokens_at_start = torch.sum(inputs == mask_token_id, axis=-1)

        # Initializes state
        state = state_init(inputs, steps, start_iter=start_iter)

        def loop_cond_fn(state):
            """Beam search loop termination condition."""
            not_at_end = (state.cur_index < steps)
            return not_at_end

        while loop_cond_fn(state):
            """Beam search loop state update function."""
            step = state.cur_index
            # Current input ids: [batch_size, seq_length].
            cur_ids = state.cur_seqs

            # Calls model on current seqs to get next-iteration seqs.
            with torch.no_grad():
                logits, _, _, _ = self.forward(
                    rearrange(inputs, 'B T -> B T 1'), 
                    code_level,
                    semantic_tokens, lengths, 
                    acoustic_token_mask=False,
                    speaker_emb=speaker_emb)

            # Samples the ids using categorical sampling:
            if vamp_filtering:
                typical_mass = 0.2
                typical_min_tokens = 1
                top_p = None
                sample_cutoff = 0.5
                typical_filtering = False
                sampled_ids, selected_probs = sample_from_logits(
                    logits, sample=((step / steps) <= sample_cutoff),
                    temperature=choice_temperature,
                    typical_filtering=typical_filtering,
                    typical_mass=typical_mass,
                    typical_min_tokens=typical_min_tokens,
                    top_k=None, top_p=top_p, return_probs=True,
                )
            else:
                sampled_ids = torch.distributions.Categorical(
                    logits=logits).sample()

            # Just updates the masked tokens.
            unknown_map = (cur_ids == mask_token_id)
            sampled_ids = torch.where(unknown_map, sampled_ids, cur_ids)
            # Defines the mask ratio for the next round. The number to mask out
            # is determined by mask_ratio * unknown_number_in_the_beginning.
            ratio = 1. * (step + 1) / steps
            mask_ratio = masking_logic.schedule(ratio)

            # Updates final seqs with the current sampled_ids.
            final_seqs = torch.clone(state.final_seqs)
            final_seqs[:, step, :] = sampled_ids
            # Computes the probabilities of each selected tokens.
            probs = torch.nn.functional.softmax(logits, dim=-1)
            # Extract the probabilities of sampled ids
            selected_probs = torch.squeeze(
                torch.take_along_dim(
                    probs, torch.unsqueeze(sampled_ids, -1) , -1),
                -1
            )

            # Ignores the tokens given in the input 
            # by overwriting their confidence.
            selected_probs = torch.where(
                unknown_map, selected_probs, torch.inf)
            # Gets mask lens for each sample in the 
            # batch according to the mask ratio.
            num_to_mask = torch.unsqueeze(
                torch.floor(num_mask_tokens_at_start * mask_ratio), 1)

            # Keeps at least one of prediction in this 
            # round and also masks out at least
            # one and for the next iteration
            num_to_mask = torch.maximum(
                torch.tensor(1), 
                torch.minimum(
                    torch.sum(unknown_map, dim=-1, keepdim=True) - 1,
                    num_to_mask)
            )
            # Adds noise for randomness
            masking = mask_by_random_topk(
                num_to_mask, selected_probs, choice_temperature * (1. - ratio))
            # Masks tokens with lower confidence.
            sampled_ids = torch.where(masking, mask_token_id, sampled_ids)  

            state = State(
                cur_index=state.cur_index + 1,
                cur_seqs=sampled_ids,
                final_seqs=final_seqs
            )

        codes = torch.clone(original_codes)
        codes = rearrange(codes, '1 T C -> T C')
        codes[:, 0] = state.final_seqs[0][-1]

        return codes