Spaces:
Sleeping
Sleeping
File size: 11,285 Bytes
35b3f62 10e50a5 35b3f62 10e50a5 35b3f62 259448b 35b3f62 431c8be 35b3f62 44ef3dd 35b3f62 90fcd9f b2cd959 35b3f62 95d7c79 35b3f62 259448b 35b3f62 6101e3a 35b3f62 6101e3a 35b3f62 90fcd9f 5cfc531 6101e3a 35b3f62 fcd14e1 35b3f62 fcd14e1 765435c 35b3f62 5cfc531 35b3f62 fcd14e1 35b3f62 9529a0d d210108 35b3f62 f4af3c4 06d0c78 35b3f62 b94c715 ab44078 35b3f62 ab44078 bf32721 5cfc531 ab44078 35b3f62 ab44078 35b3f62 ab44078 35b3f62 ab44078 5cfc531 35b3f62 5cfc531 35b3f62 ab44078 35b3f62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
from flask import Flask, jsonify, send_file, request, send_from_directory
from flask_cors import CORS
import os, json, uuid, time
import pandas as pd
from datetime import datetime, timedelta
from huggingface_hub import HfApi
import sys
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from system.pledge_tracking import run_pipeline
from huggingface_hub import hf_hub_download
import spacy
import traceback
import threading
nlp = spacy.load("en_core_web_sm")
app = Flask(__name__, static_folder='.')
CORS(app)
HF_DATASET_REPO = "PledgeTracker/demo_feedback"
HF_TOKEN = os.environ.get("HF_TOKEN")
TMP_DIR = "tmp"
FEEDBACK_DIR = "feedback_logs"
os.makedirs(TMP_DIR, exist_ok=True)
os.makedirs(FEEDBACK_DIR, exist_ok=True)
REFERENCE_PLEDGES = []
REFERENCE_PLEDGE_PATH = hf_hub_download(
repo_id="PledgeTracker/demo_feedback",
filename="existing_pledges.txt",
repo_type="dataset",
token=os.environ["HF_TOKEN"]
)
if os.path.exists(REFERENCE_PLEDGE_PATH):
with open(REFERENCE_PLEDGE_PATH, "r") as f:
REFERENCE_PLEDGES = [line.strip() for line in f if line.strip()]
else:
print(f"Missing reference pledge file: {REFERENCE_PLEDGE_PATH}")
def lemmatize(text):
doc = nlp(text)
return " ".join([token.lemma_ for token in doc if not token.is_punct and not token.is_space])
@app.route("/api/similar-pledges", methods=["POST"])
def similar_pledges():
data = request.get_json()
claim = data.get("claim", "").strip()
if not claim or not REFERENCE_PLEDGES:
return jsonify({"suggestions": []})
all_pledges = [claim] + REFERENCE_PLEDGES
lemmatized_pledges = [lemmatize(p) for p in all_pledges]
vectorizer = TfidfVectorizer().fit_transform(lemmatized_pledges)
similarities = cosine_similarity(vectorizer[0:1], vectorizer[1:]).flatten()
filtered = [(i, similarities[i]) for i in range(len(similarities)) if similarities[i] > 0.3]
top_filtered = sorted(filtered, key=lambda x: x[1], reverse=True)[:5]
suggestions = [
{"text": REFERENCE_PLEDGES[i], "index": int(i)}
for i, score in top_filtered
]
return jsonify({"suggestions": suggestions})
def calculate_time_range(option: str, pledge_date: str = None):
today = datetime.today()
# pledge_date = datetime.strptime(pledge_date, "%Y-%m-%d")
if isinstance(pledge_date, str):
pledge_date = datetime.strptime(pledge_date, "%Y-%m-%d")
elif not isinstance(pledge_date, datetime):
raise ValueError("pledge_date must be a str or datetime")
if option == "week":
one_week_ago = today - timedelta(days=7)
start = max(one_week_ago, pledge_date)
elif option == "month":
one_month_ago = today - timedelta(days=30)
start = max(one_month_ago, pledge_date)
elif option == "since_pledge_date":
if not pledge_date:
raise ValueError("Pledge date is required for 'since_pledge_date' option")
start = pledge_date
else:
raise ValueError("Invalid time range option")
print(start, pledge_date)
return start.strftime("%Y%m%d"), today.strftime("%Y%m%d")
@app.route("/")
def serve_html():
return send_from_directory('.', 'test.html')
@app.route("/api/status")
def check_status():
user_id = request.args.get("user_id")
timestamp = request.args.get("timestamp")
log_file_path = os.path.join(TMP_DIR, f"{timestamp}_{user_id}_status.log")
if not os.path.exists(log_file_path):
return jsonify({"status": {}}), 200
try:
with open(log_file_path, "r") as f:
status = json.load(f)
except Exception:
status = {}
return jsonify({"status": status})
@app.route("/api/run-model", methods=["POST"])
def run_model():
data = request.get_json()
claim = data.get("claim", "no input")
time_range_option = data.get("time_range", "month")
system_start_time = datetime.now()
suggestion_meta = data.get("suggestion_meta")
pledge_date = data.get("pledge_date", "")
pledge_author = data.get("pledge_author", "")
timestamp = data.get("timestamp") or time.strftime("%Y-%m-%d_%H-%M-%S")
user_id = data.get("user_id") or str(uuid.uuid4())[:8]
log_file_path = os.path.join(TMP_DIR, f"{timestamp}_{user_id}_status.log")
status_lock = threading.Lock()
def update_status(step_id, msg):
print(f"[STATUS] Step {step_id}: {msg}")
with status_lock:
if os.path.exists(log_file_path):
try:
with open(log_file_path, "r") as f:
current = json.load(f)
except Exception:
current = {}
else:
current = {}
current[str(step_id)] = f"{msg}"
with open(log_file_path, "w") as f:
json.dump(current, f, indent=2)
try:
time_start, time_end = calculate_time_range(time_range_option, pledge_date=pledge_date)
print(f"[DEMO] Received claim: {claim}")
print(f"[DEMO] Time range: {time_start} ~ {time_end}")
print(f"[DEMO] Pledge date range: {pledge_date}")
# user_id = str(uuid.uuid4())[:8]
# outputs = run_pipeline(claim, pledge_date, pledge_author, time_start, timestamp, user_id)
update_status(0, "π Starting the system ...")
print(suggestion_meta)
outputs = run_pipeline(
claim, pledge_date, pledge_author, time_start, timestamp, user_id,
update_fn=update_status, suggestion_meta=suggestion_meta
)
df = pd.read_excel(outputs["sorted_events"])
json_path = os.path.join(TMP_DIR, f"{timestamp}_{user_id}.json")
df.to_json(json_path, orient="records", indent=2)
system_end_time = datetime.now()
runtime = system_end_time - system_start_time
events = df.to_dict(orient="records")
log_entry = {
"requested_time": timestamp,
"user_id": user_id,
"pledge": claim,
"suggestion_meta": suggestion_meta,
"time_start": time_start,
"time_end": time_end,
"runtime": runtime.total_seconds(),
"pledge_author": pledge_author,
"pledge_date": pledge_date,
"events": events
}
default_log_path = f"{FEEDBACK_DIR}/feedback_{timestamp}_{user_id}.jsonl"
with open(default_log_path, "w") as f:
f.write(json.dumps(log_entry, indent=1))
tsv_path = outputs["augmented_tsv_file"]
try:
api = HfApi()
api.upload_file(
path_or_fileobj=default_log_path,
path_in_repo=f"logs/feedback_{timestamp}_{user_id}.jsonl",
repo_id=HF_DATASET_REPO,
repo_type="dataset",
token=HF_TOKEN
)
api.upload_file(
path_or_fileobj=tsv_path,
path_in_repo=f"logs/augmented_{timestamp}_{user_id}.tsv",
repo_id=HF_DATASET_REPO,
repo_type="dataset",
token=HF_TOKEN
)
except Exception as e:
traceback.print_exc()
print(f"[Default Feedback Upload Error] {e}")
return jsonify({
"status": "success",
"file": f"{timestamp}_{user_id}.json",
"user_id": user_id,
"timestamp": timestamp
})
except Exception as e:
traceback.print_exc()
return jsonify({"status": "error", "detail": str(e)}), 500
@app.route("/api/events")
def get_events():
filename = request.args.get("file")
file_path = os.path.join(TMP_DIR, filename)
if not os.path.exists(file_path):
return jsonify({"error": "File not found"}), 404
with open(file_path, "r") as f:
events = json.load(f)
return jsonify(events)
@app.route("/api/feedback", methods=["POST"])
def receive_feedback():
data = request.get_json()
pledge = data.get("pledge", "no_pledge_text")
feedback_list = data.get("feedback", [])
filename = data.get("file")
file_path = os.path.join(TMP_DIR, filename)
timestamp = data.get("timestamp")
user_id = data.get("user_id")
if not user_id or not timestamp:
return jsonify({'status': 'error', 'detail': 'Missing user_id or timestamp'}), 400
if not os.path.exists(file_path):
return jsonify({"error": "Event file not found"}), 400
with open(file_path, "r") as f:
events = json.load(f)
suggestion_meta = None
time_start = None
time_end = None
try:
prev_log_path = f"{FEEDBACK_DIR}/feedback_{timestamp}_{user_id}.jsonl"
with open(prev_log_path, "r") as f:
previous_log = json.load(f)
suggestion_meta = previous_log.get("suggestion_meta")
time_start = previous_log.get("time_start")
time_end = previous_log.get("time_end")
pledge_author = previous_log.get("pledge_author")
pledge_date = previous_log.get("pledge_date")
runtime = previous_log.get("runtime")
except Exception:
pass
feedback_dict = {int(item['eventIndex']): item['answer'] for item in feedback_list}
for idx, event in enumerate(events):
event["user_feedback"] = feedback_dict.get(idx)
log_entry = {
"requested_time": timestamp,
"user_id": user_id,
"pledge": pledge,
"suggestion_meta": suggestion_meta,
"time_start": time_start,
"time_end": time_end,
"runtime": runtime,
"pledge_author": pledge_author,
"pledge_date": pledge_date,
"events": events
}
local_filename = f"{FEEDBACK_DIR}/feedback_{timestamp}_{user_id}.jsonl"
with open(local_filename, "w") as f:
f.write(json.dumps(log_entry, indent=1))
try:
api = HfApi()
api.upload_file(
path_or_fileobj=local_filename,
path_in_repo=f"logs/feedback_{timestamp}_{user_id}.jsonl",
repo_id=HF_DATASET_REPO,
repo_type="dataset",
token=HF_TOKEN
)
except Exception as e:
return jsonify({'status': 'partial_success', 'error': str(e)}), 500
return jsonify({'status': 'success'})
@app.route("/download-feedback/<filename>")
def download_feedback_file(filename):
return send_from_directory(FEEDBACK_DIR, filename, as_attachment=True)
@app.route("/feedback-files")
def list_feedback_files():
files = os.listdir(FEEDBACK_DIR)
return jsonify(sorted(files))
@app.route("/download")
def download_excel():
file = request.args.get("file")
if not file:
return "Missing file param", 400
json_path = os.path.join(TMP_DIR, file)
if not os.path.exists(json_path):
return "Event file not found", 404
with open(json_path, "r") as f:
data = json.load(f)
df = pd.DataFrame(data)
xlsx_path = os.path.join(TMP_DIR, file.replace(".json", ".xlsx"))
df.to_excel(xlsx_path, index=False)
return send_file(xlsx_path, as_attachment=True)
if __name__ == '__main__':
app.run(host="0.0.0.0", port=7860)
|