File size: 8,902 Bytes
f32cd36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import gradio as gr
import torch
import torchaudio
import librosa
from modules.commons import build_model, load_checkpoint, recursive_munch
import yaml
from hf_utils import load_custom_model_from_hf

# Load model and configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
                                                "DiT_step_298000_seed_uvit_facodec_small_wavenet_pruned.pth",
                                                "config_dit_mel_seed_facodec_small_wavenet.yml")

config = yaml.safe_load(open(dit_config_path, 'r'))
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, stage='DiT')
hop_length = config['preprocess_params']['spect_params']['hop_length']
sr = config['preprocess_params']['sr']

# Load checkpoints
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path,
                                 load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model:
    model[key].eval()
    model[key].to(device)
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)

# Load additional modules
from modules.campplus.DTDNN import CAMPPlus

campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_model.load_state_dict(torch.load(config['model_params']['style_encoder']['campplus_path']))
campplus_model.eval()
campplus_model.to(device)

from modules.hifigan.generator import HiFTGenerator
from modules.hifigan.f0_predictor import ConvRNNF0Predictor

hift_checkpoint_path, hift_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
                                                "hift.pt",
                                                "hifigan.yml")
hift_config = yaml.safe_load(open(hift_config_path, 'r'))
hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
hift_gen.load_state_dict(torch.load(hift_checkpoint_path, map_location='cpu'))
hift_gen.eval()
hift_gen.to(device)

speech_tokenizer_type = config['model_params']['speech_tokenizer'].get('type', 'cosyvoice')
if speech_tokenizer_type == 'cosyvoice':
    from modules.cosyvoice_tokenizer.frontend import CosyVoiceFrontEnd
    speech_tokenizer_path = load_custom_model_from_hf("Plachta/Seed-VC", "speech_tokenizer_v1.onnx", None)
    cosyvoice_frontend = CosyVoiceFrontEnd(speech_tokenizer_model=speech_tokenizer_path,
                                           device='cuda', device_id=0)
elif speech_tokenizer_type == 'facodec':
    ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')

    codec_config = yaml.safe_load(open(config_path))
    codec_model_params = recursive_munch(codec_config['model_params'])
    codec_encoder = build_model(codec_model_params, stage="codec")

    ckpt_params = torch.load(ckpt_path, map_location="cpu")

    for key in codec_encoder:
        codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
    _ = [codec_encoder[key].eval() for key in codec_encoder]
    _ = [codec_encoder[key].to(device) for key in codec_encoder]
# Generate mel spectrograms
mel_fn_args = {
    "n_fft": config['preprocess_params']['spect_params']['n_fft'],
    "win_size": config['preprocess_params']['spect_params']['win_length'],
    "hop_size": config['preprocess_params']['spect_params']['hop_length'],
    "num_mels": config['preprocess_params']['spect_params']['n_mels'],
    "sampling_rate": sr,
    "fmin": 0,
    "fmax": 8000,
    "center": False
}
from modules.audio import mel_spectrogram

to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)

@torch.no_grad()
@torch.inference_mode()
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, n_quantizers):
    # Load audio
    source_audio = librosa.load(source, sr=sr)[0]
    ref_audio = librosa.load(target, sr=sr)[0]
    # source_sr, source_audio = source
    # ref_sr, ref_audio = target
    # # if any of the inputs has 2 channels, take the first only
    # if source_audio.ndim == 2:
    #     source_audio = source_audio[:, 0]
    # if ref_audio.ndim == 2:
    #     ref_audio = ref_audio[:, 0]
    #
    # source_audio, ref_audio = source_audio / 32768.0, ref_audio / 32768.0
    #
    # # if source or audio sr not equal to default sr, resample
    # if source_sr != sr:
    #     source_audio = librosa.resample(source_audio, source_sr, sr)
    # if ref_sr != sr:
    #     ref_audio = librosa.resample(ref_audio, ref_sr, sr)

    # Process audio
    source_audio = torch.tensor(source_audio[:sr * 30]).unsqueeze(0).float().to(device)
    ref_audio = torch.tensor(ref_audio[:sr * 30]).unsqueeze(0).float().to(device)

    # Resample
    source_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
    ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)

    # Extract features
    if speech_tokenizer_type == 'cosyvoice':
        S_alt = cosyvoice_frontend.extract_speech_token(source_waves_16k)[0]
        S_ori = cosyvoice_frontend.extract_speech_token(ref_waves_16k)[0]
    elif speech_tokenizer_type == 'facodec':
        converted_waves_24k = torchaudio.functional.resample(source_audio, sr, 24000)
        wave_lengths_24k = torch.LongTensor([converted_waves_24k.size(1)]).to(converted_waves_24k.device)
        waves_input = converted_waves_24k.unsqueeze(1)
        z = codec_encoder.encoder(waves_input)
        (
            quantized,
            codes
        ) = codec_encoder.quantizer(
            z,
            waves_input,
        )
        S_alt = torch.cat([codes[1], codes[0]], dim=1)

        # S_ori should be extracted in the same way
        waves_24k = torchaudio.functional.resample(ref_audio, sr, 24000)
        waves_input = waves_24k.unsqueeze(1)
        z = codec_encoder.encoder(waves_input)
        (
            quantized,
            codes
        ) = codec_encoder.quantizer(
            z,
            waves_input,
        )
        S_ori = torch.cat([codes[1], codes[0]], dim=1)

    mel = to_mel(source_audio.to(device).float())
    mel2 = to_mel(ref_audio.to(device).float())

    target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
    target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)

    feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
                                              num_mel_bins=80,
                                              dither=0,
                                              sample_frequency=16000)
    feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
    style2 = campplus_model(feat2.unsqueeze(0))

    # Length regulation
    cond = model.length_regulator(S_alt, ylens=target_lengths, n_quantizers=int(n_quantizers))[0]
    prompt_condition = model.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=int(n_quantizers))[0]
    cat_condition = torch.cat([prompt_condition, cond], dim=1)

    # Voice Conversion
    vc_target = model.cfm.inference(cat_condition, torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
                                    mel2, style2, None, diffusion_steps, inference_cfg_rate=inference_cfg_rate)
    vc_target = vc_target[:, :, mel2.size(-1):]

    # Convert to waveform
    vc_wave = hift_gen.inference(vc_target)

    return sr, vc_wave.squeeze(0).cpu().numpy()


if __name__ == "__main__":
    description = "Zero-shot voice conversion with in-context learning. Check out our [GitHub repository](https://github.com/Plachtaa/seed-vc) for details and updates."
    inputs = [
        gr.Audio(type="filepath", label="Source Audio"),
        gr.Audio(type="filepath", label="Reference Audio"),
        gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps", info="10 by default, 50~100 for best quality"),
        gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust", info="<1.0 for speed-up speech, >1.0 for slow-down speech"),
        gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence"),
        gr.Slider(minimum=1, maximum=3, step=1, value=3, label="N Quantizers", info="the less quantizer used, the less prosody of source audio is preserved"),
    ]

    examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 50, 1.0, 0.7, 1]]

    outputs = gr.Audio(label="Output Audio")

    gr.Interface(fn=voice_conversion,
                 description=description,
                 inputs=inputs,
                 outputs=outputs,
                 title="Seed Voice Conversion",
                 examples=examples,
                 ).launch()