Spaces:
Sleeping
Sleeping
File size: 6,960 Bytes
180d138 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import math
import numpy as np
import matplotlib.pyplot as plt
import random
from typing import Any
K = 1
def sigmoid(x):
# print(x)
return 1/(1+np.exp(-K*x))
def modsigmoid(x):
return 2/(1+math.exp(abs(x)))
class Value:
def __init__(self, data, _children = (), _op='', label = ''):
self.data = data
self.grad = 0.0 # represents derivative of the parent node with respec to current node
self._prev = set(_children)
self._backward = lambda: None
self._op = _op
self.label = label
def __repr__(self):
return f'Value(data={self.data})'
def __add__(self, other):
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data+other.data, (self, other), '+')
def _backward():
self.grad += 1.0*out.grad # out and self are addresses here, so if it gets executed in outer node then out == currentnode and self and other == children, so even if we are assigning a different address to out in current node, since out was used in this node, out will be current node when executing the function
other.grad += 1.0*out.grad
out._backward = _backward
return out
def __mul__(self, other):
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data*other.data, (self, other), '*')
def _backward():
self.grad += other.data*out.grad
other.grad += self.data*out.grad
out._backward = _backward
return out
def __pow__(self, other):
assert isinstance(other,(int, float))
out = Value(self.data**other, (self,), f'**{other}')
def _backward():
self.grad += other*(self.data**(other-1))*out.grad
out._backward = _backward
return out
def __rmul__(self, other): # other*self
return self*other
def __truediv__(self, other):
return self*other**-1
def __neg__(self):
return self*-1
def __sub__(self, other):
return self + (-other)
def __radd__(self, other):
return self + other
def tanh(self):
x = self.data
t = (math.exp(2*x) - 1)/(math.exp(2*x) + 1)
out = Value(t, (self, ), 'tanh')
def _backward():
self.grad += (1 - t**2)*out.grad
out._backward = _backward
return out
def sin(self):
x = self.data
out = Value(math.sin(x), (self, ), 'sin')
def _backward():
self.grad += math.cos(x)*out.grad
out._backward = _backward
return out
def cos(self):
x = self.data
out = Value(math.cos(x), (self, ), 'cos')
def _backward():
self.grad += -math.sin(x)*out.grad
out._backward = _backward
return out
def tan(self):
x = self.data
out = Value(math.tan(x), (self, ), 'tan')
def _backward():
self.grad += (1/math.cos(x)**2)*out.grad
out._backward = _backward
return out
def cot(self):
x = self.data
out = Value(math.cot(x), (self, ), 'cot')
def _backward():
self.grad += -(1/math.sin(x)**2)*out.grad
out._backward = _backward
return out
def sinh(self):
x = self.data
out = Value(math.sinh(x), (self, ), 'sinh')
def _backward():
self.grad += math.cosh(x)*out.grad
out._backward = _backward
return out
def cosh(self):
x = self.data
out = Value(math.cosh(x), (self, ), 'sinh')
def _backward():
self.grad += math.sinh(x)*out.grad
out._backward = _backward
return out
def exp(self):
x = self.data
out = Value(math.exp(x), (self,), 'exp')
def _backward():
self.grad += out.data*out.grad
out._backward = _backward
return out
def reLu(self):
x = self.data
out = Value(max(0, x), (self, ), 'reLu')
def _backward():
if x > 0:
self.grad += out.grad
else:
self.grad += 0
out._backward = _backward
return out
def sigmoid(self):
x = self.data
s = sigmoid(x)
out = Value(s, (self,), 'sigmoid')
def _backward():
self.grad += K*s*(1 - s)*out.grad
out._backward = _backward
return out
def log(self):
x = self.data
# print(x)
out = Value(math.log(x), (self,), 'log')
def _backward():
self.grad += (1/x)*out.grad
out._backward = _backward
return out
def modsigmoid(self):
x = self.data
s = modsigmoid(x)
out = Value(s, (self,), 'modsigmoid')
def _backward():
if x >= 0:
self.grad += -((2*x)/(x*(1+x)**2))*out.grad
else:
self.grad += -((2*x)/(-x*(1-x)**2))*out.grad
out._backward = _backward
return out
def sinc(self):
if x == 0:
print('error 0 not valdid input')
return
x = self.data
out = Value(math.sinx(x)/x, (self, ), 'sinc')
def _backward():
self.grad += ((2*x*math.sin(x) - (x**2)*math.cos(x))/(x**4))*out.grad
out._backward = _backward
return out
def backward(self):
topo = []
visited = set()
def build_topo(v):
if v not in visited:
visited.add(v)
for child in v._prev:
build_topo(child)
topo.append(v)
build_topo(self)
self.grad = 1.0
for node in reversed(topo):
node._backward()
class Neuron:
def __init__(self, nin, activation='sigmoid'):
self.w = [Value(random.uniform(-2, 2)) for _ in range(nin)]
self.b = Value(random.uniform(-2, 2))
self.activation = activation
def parameters(self):
return self.w + [self.b]
def __call__(self, x): # Neuron()(x)
act = sum((xi*wi for xi, wi in zip(x, self.w)), self.b)
if self.activation == 'sigmoid':
out = act.sigmoid()
if self.activation == 'reLu':
out = act.reLu()
if self.activation == 'modsigmoid':
out = act.modsigmoid()
if self.activation == '':
return act
if self.activation == 'threshold':
return Value(1) if act.data > 0 else Value(0)
return out
class Layer:
def __init__(self, nin, nout, activation='sigmoid'):
self.neurons = [Neuron(nin, activation=activation) for _ in range(nout)]
def parameters(self):
return [p for neuron in self.neurons for p in neuron.parameters()]
def __call__(self, x):
outs = [n(x) for n in self.neurons]
return outs[0] if len(outs) == 1 else outs |