File size: 6,960 Bytes
180d138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import math
import numpy as np
import matplotlib.pyplot as plt
import random
from typing import Any

K = 1

def sigmoid(x):
    # print(x)
    return 1/(1+np.exp(-K*x))
def modsigmoid(x):
    return 2/(1+math.exp(abs(x)))


class Value:

    def __init__(self, data, _children = (), _op='', label = ''):
        self.data = data
        self.grad = 0.0 # represents derivative of the parent node with respec to current node
        self._prev = set(_children)
        self._backward = lambda: None
        self._op = _op
        self.label = label

    def __repr__(self):
        return f'Value(data={self.data})'

    def __add__(self, other):
        other = other if isinstance(other, Value) else Value(other)
        out = Value(self.data+other.data, (self, other), '+')

        def _backward():
            self.grad += 1.0*out.grad  # out and self are addresses here, so if it gets executed in outer node then out == currentnode and self and other == children, so even if we are assigning a different address to out in current node, since out was used in this node, out will be current node when executing the function
            other.grad += 1.0*out.grad
        out._backward = _backward

        return out
    
    def __mul__(self, other):
        other = other if isinstance(other, Value) else Value(other)
        out = Value(self.data*other.data, (self, other), '*')
        def _backward():
            self.grad += other.data*out.grad
            other.grad += self.data*out.grad
        out._backward = _backward
        return out

    def __pow__(self, other):
        assert isinstance(other,(int, float))

        out = Value(self.data**other, (self,), f'**{other}')

        def _backward():
            self.grad += other*(self.data**(other-1))*out.grad
        out._backward = _backward
        return out
    
    def __rmul__(self, other): # other*self
        return self*other
    
    def __truediv__(self, other):
        return self*other**-1
    
    def __neg__(self):
        return self*-1

    def __sub__(self, other):
        return self + (-other)
    
    def __radd__(self, other):
        return self + other

    

    def tanh(self):
        x = self.data
        t = (math.exp(2*x) - 1)/(math.exp(2*x) + 1)
        out = Value(t, (self, ), 'tanh')
        def _backward():
            self.grad += (1 - t**2)*out.grad
        out._backward = _backward
        return out
    def sin(self):
        x = self.data
        out = Value(math.sin(x), (self, ), 'sin')
        def _backward():
            self.grad += math.cos(x)*out.grad
        out._backward = _backward
        return out
    def cos(self):
        x = self.data
        out = Value(math.cos(x), (self, ), 'cos')
        def _backward():
            self.grad += -math.sin(x)*out.grad
        out._backward = _backward
        return out
    def tan(self):
        x = self.data
        out = Value(math.tan(x), (self, ), 'tan')
        def _backward():
            self.grad += (1/math.cos(x)**2)*out.grad
        out._backward = _backward
        return out
    def cot(self):
        x = self.data
        out = Value(math.cot(x), (self, ), 'cot')
        def _backward():
            self.grad += -(1/math.sin(x)**2)*out.grad
        out._backward = _backward
        return out
    def sinh(self):
        x = self.data
        out = Value(math.sinh(x), (self, ), 'sinh')
        def _backward():
            self.grad += math.cosh(x)*out.grad
        out._backward = _backward
        return out
    def cosh(self):
        x = self.data
        out = Value(math.cosh(x), (self, ), 'sinh')
        def _backward():
            self.grad += math.sinh(x)*out.grad
        out._backward = _backward
        return out
    

    def exp(self):
        x = self.data
        out = Value(math.exp(x), (self,), 'exp')

        def _backward():
            self.grad += out.data*out.grad
        out._backward = _backward
        return out
    def reLu(self):
        x = self.data
        out = Value(max(0, x), (self, ), 'reLu')
        def _backward():
            if x > 0:
                self.grad += out.grad
            else:
                self.grad += 0
        out._backward = _backward
        return out
     
    def sigmoid(self):
        x = self.data
        s = sigmoid(x)
        out = Value(s, (self,), 'sigmoid')

        def _backward():
            self.grad += K*s*(1 - s)*out.grad
        out._backward = _backward
        return out
    def log(self):
        x = self.data
        # print(x)
        out = Value(math.log(x), (self,), 'log')

        def _backward():
            self.grad += (1/x)*out.grad
        out._backward = _backward
        return out
    
    def modsigmoid(self):
        x = self.data
        s = modsigmoid(x)
        out = Value(s, (self,), 'modsigmoid')

        def _backward():
            if x >= 0:
                self.grad += -((2*x)/(x*(1+x)**2))*out.grad
            else:
                self.grad += -((2*x)/(-x*(1-x)**2))*out.grad

        out._backward = _backward
        return out
        

    def sinc(self):
        if x == 0:
            print('error 0 not valdid input')
            return  
        x = self.data
        out = Value(math.sinx(x)/x, (self, ), 'sinc')
        def _backward():
            self.grad += ((2*x*math.sin(x) - (x**2)*math.cos(x))/(x**4))*out.grad
        out._backward = _backward
        return out
        
    def backward(self):
        topo = []
        visited = set()
        def build_topo(v):
            if v not in visited:
              visited.add(v)
              for child in v._prev:
                build_topo(child)
              topo.append(v)
        build_topo(self)
        self.grad = 1.0
        for node in reversed(topo):
            node._backward()
class Neuron:
    def __init__(self, nin, activation='sigmoid'):
        self.w = [Value(random.uniform(-2, 2)) for _ in range(nin)]
        self.b = Value(random.uniform(-2, 2))
        self.activation = activation
    
    def parameters(self):
        return self.w + [self.b]

    def __call__(self, x): # Neuron()(x)

        act = sum((xi*wi for xi, wi in zip(x, self.w)), self.b)
        if self.activation == 'sigmoid':
            out = act.sigmoid()
        if self.activation == 'reLu':
            out = act.reLu()
        if self.activation == 'modsigmoid':
            out = act.modsigmoid()
        if self.activation == '':
            return act
        if self.activation == 'threshold':
            return Value(1) if act.data > 0 else Value(0)
        return out



class Layer:
    def __init__(self, nin, nout, activation='sigmoid'):
        self.neurons = [Neuron(nin, activation=activation) for _ in range(nout)]
    
    def parameters(self):
        return [p for neuron in self.neurons for p in neuron.parameters()]
    def __call__(self, x):
        outs = [n(x) for n in self.neurons]
        return outs[0] if len(outs) == 1 else outs