File size: 6,743 Bytes
827013d b2f0dbe 827013d d76e3c3 b2f0dbe 3f8f0be b2f0dbe 3f8f0be b2f0dbe 3f8f0be b2f0dbe ad6db2b b2f0dbe 3f8f0be b2f0dbe 3f8f0be b2f0dbe 304ad78 f39513f b2f0dbe 304ad78 b2f0dbe d76e3c3 3f8f0be b2f0dbe d76e3c3 b2f0dbe 74b8f0b d76e3c3 8acae36 b2f0dbe bbaf99c 8acae36 09e5e64 e966d07 b2f0dbe bbaf99c 827013d b2f0dbe 827013d b2f0dbe 827013d bbaf99c f39513f e6e1ceb b2f0dbe e6e1ceb b2f0dbe f39513f 827013d b2f0dbe 8acae36 b2f0dbe 8acae36 77394b8 f39513f 8acae36 f39513f 827013d e6e1ceb 827013d 4b4eb33 b2f0dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import pixeltable as pxt
import os
import openai
import gradio as gr
import getpass
from pixeltable.iterators import FrameIterator
from pixeltable.functions.video import extract_audio
from pixeltable.functions.audio import get_metadata
from pixeltable.functions import openai
if 'OPENAI_API_KEY' not in os.environ:
os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key:')
# Create a Pixeltable directory to organize related tables
pxt.drop_dir('directory', force=True)
pxt.create_dir('directory')
# Create a table to store video data
t = pxt.create_table(
'directory.video_table', {
"video": pxt.VideoType(nullable=True),
"sm_type": pxt.StringType(nullable=True),
}
)
# Create a view that automatically extracts frames from videos
frames_view = pxt.create_view(
"directory.frames",
t,
iterator=FrameIterator.create(video=t.video, num_frames=2)
)
# Create computed columns to store transformations and persist outputs
t['audio'] = extract_audio(t.video, format='mp3')
t['metadata'] = get_metadata(t.audio)
t['transcription'] = openai.transcriptions(audio=t.audio, model='whisper-1')
t['transcription_text'] = t.transcription.text
# Create a user-defined function (UDF) to construct the prompt
# This shows how Pixeltable allows users to extend functionality with custom Python code
@pxt.udf
def prompt(A: str, B: str) -> list[dict]:
return [
{'role': 'system', 'content': 'You are an expert in creating social media content and you generate effective post, based on the video transcript and the type of social media asked for. Please respect the limitations in terms of characters and size of each social media platform'},
{'role': 'user', 'content': f'A: "{A}" \n B: "{B}"'}
]
t['message'] = prompt(t.sm_type, t.transcription_text)
# Import a function from Pixeltable's built-in library for OpenAI
t['response'] = openai.chat_completions(messages=t.message, model='gpt-4o-mini-2024-07-18', max_tokens=500)
t['answer'] = t.response.choices[0].message.content
MAX_VIDEO_SIZE_MB = 35
def process_and_generate_post(video_file, social_media_type):
if not video_file:
return "Please upload a video file.", None
try:
# Check video file size
video_size = os.path.getsize(video_file) / (1024 * 1024) # Convert to MB
if video_size > MAX_VIDEO_SIZE_MB:
return f"The video file is larger than {MAX_VIDEO_SIZE_MB} MB. Please upload a smaller file.", None
# # Insert a video into the table. Pixeltable supports referencing external data sources like URLs
t.insert([{
"video": video_file,
"sm_type": social_media_type
}])
# Retrieve Social media posts
social_media_post = t.select(t.answer).tail(1)['answer'][0]
# Retrieve Audio
audio = t.select(t.audio).tail(1)['audio'][0]
# Retrieve thumbnails
thumbnails = frames_view.select(frames_view.frame).tail(4)['frame']
# Retrieve Pixeltable Table containing all videos and stored data
df_output = t.collect().to_pandas()
#Display content
return social_media_post, thumbnails, df_output, audio
except Exception as e:
return f"An error occurred: {str(e)}", None
# Gradio Interface
import gradio as gr
def gradio_interface():
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
gr.Markdown(
"""<p>
<img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png" alt="Pixeltable" width="20%" />
<h1>Video to Social Media Post Generator</h1>
<h3>Key functionalities demonstrated in this example:</h3>
</p>
<ul>
<li><strong>Video Data Management:</strong> Creating tables and views to store and organize video data.</li>
<li><strong>Automated Video Processing:</strong> Extracting frames and audio from videos.</li>
<li><strong>Data Transformation:</strong> Computing and storing metadata, transcriptions, and AI-generated content.</li>
<li><strong>AI Integration:</strong> Utilizing OpenAI's GPT and Whisper models for transcription and content generation.</li>
<li><strong>Custom Functions:</strong> Defining user-defined functions (UDFs) for specialized tasks like prompt construction.</li>
<li><strong>Data Persistence:</strong> Storing transformed data and AI outputs for easy retrieval and analysis.</li>
<li><strong>Gradio Integration:</strong> Creating an interactive web interface for easy user interaction with Pixeltable's functionalities.</li>
</ul>
"""
)
with gr.Row():
with gr.Column():
video_input = gr.Video(
label=f"Upload Video File (max {MAX_VIDEO_SIZE_MB} MB):",
include_audio=True,
max_length=300,
height='400px',
autoplay=True
)
social_media_type = gr.Dropdown(
choices=["X (Twitter)", "Facebook", "LinkedIn", "Instagram"],
label="Select Social Media Platform:",
value="X (Twitter)",
)
generate_btn = gr.Button("Generate Post")
gr.Examples(
examples=[["example1.mp4"], ["example2.mp4"], ["example3.mp4"]],
inputs=[video_input]
)
with gr.Column():
output = gr.Textbox(label="Generated Social Media Post", show_copy_button=True)
thumbnail = gr.Gallery(
label="Pick your favorite Post Thumbnail",
show_download_button=True,
show_fullscreen_button=True,
height='400px'
)
audio = gr.Audio()
df_output = gr.DataFrame(label="Pixeltable Table")
generate_btn.click(
fn=process_and_generate_post,
inputs=[video_input, social_media_type],
outputs=[output, thumbnail, df_output, audio],
)
gr.HTML(
"""
<div class="footer">
<p>Pixeltable is a declarative interface for working with text, images, embeddings, and even video, enabling you to store, transform, index, and iterate on data. Powered solely by <a href="https://github.com/pixeltable/pixeltable" style="text-decoration: underline;" target="_blank">Pixeltable</a> - running OpenAI (gpt-4o-mini-2024-07-18).</a></p>
</div>
"""
)
return demo
# Launch the Gradio interface
if __name__ == "__main__":
gradio_interface().launch(show_api=False) |