File size: 6,743 Bytes
827013d
 
b2f0dbe
 
827013d
d76e3c3
b2f0dbe
 
 
 
 
 
 
3f8f0be
b2f0dbe
 
 
3f8f0be
b2f0dbe
 
 
 
 
 
 
3f8f0be
b2f0dbe
 
 
ad6db2b
b2f0dbe
 
 
 
 
 
 
 
3f8f0be
 
b2f0dbe
 
 
 
 
 
 
 
 
3f8f0be
b2f0dbe
 
304ad78
 
f39513f
b2f0dbe
 
 
304ad78
b2f0dbe
 
 
 
 
d76e3c3
3f8f0be
b2f0dbe
 
 
 
d76e3c3
b2f0dbe
74b8f0b
d76e3c3
8acae36
 
 
b2f0dbe
bbaf99c
8acae36
09e5e64
 
e966d07
b2f0dbe
bbaf99c
827013d
b2f0dbe
 
827013d
 
b2f0dbe
 
827013d
bbaf99c
f39513f
e6e1ceb
b2f0dbe
e6e1ceb
 
 
 
 
 
 
 
 
 
 
 
b2f0dbe
f39513f
827013d
b2f0dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8acae36
 
 
 
b2f0dbe
 
 
 
 
 
 
 
8acae36
 
77394b8
 
f39513f
 
 
8acae36
f39513f
827013d
e6e1ceb
 
 
 
 
 
 
827013d
 
4b4eb33
b2f0dbe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import pixeltable as pxt
import os
import openai
import gradio as gr
import getpass
from pixeltable.iterators import FrameIterator
from pixeltable.functions.video import extract_audio
from pixeltable.functions.audio import get_metadata
from pixeltable.functions import openai

if 'OPENAI_API_KEY' not in os.environ:
    os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key:')

# Create a Pixeltable directory to organize related tables
pxt.drop_dir('directory', force=True)
pxt.create_dir('directory')

# Create a table to store video data
t = pxt.create_table(
    'directory.video_table', {
    "video": pxt.VideoType(nullable=True),
    "sm_type": pxt.StringType(nullable=True),
    }
)

# Create a view that automatically extracts frames from videos
frames_view = pxt.create_view(
    "directory.frames",
    t,
    iterator=FrameIterator.create(video=t.video, num_frames=2)
)

# Create computed columns to store transformations and persist outputs
t['audio'] = extract_audio(t.video, format='mp3')
t['metadata'] = get_metadata(t.audio)
t['transcription'] = openai.transcriptions(audio=t.audio, model='whisper-1')
t['transcription_text'] = t.transcription.text

# Create a user-defined function (UDF) to construct the prompt
# This shows how Pixeltable allows users to extend functionality with custom Python code
@pxt.udf
def prompt(A: str, B: str) -> list[dict]:
    return [
        {'role': 'system', 'content': 'You are an expert in creating social media content and you generate effective post, based on the video transcript and the type of social media asked for. Please respect the limitations in terms of characters and size of each social media platform'},
        {'role': 'user', 'content': f'A: "{A}" \n B: "{B}"'}
    ]

t['message'] = prompt(t.sm_type, t.transcription_text)

# Import a function from Pixeltable's built-in library for OpenAI
t['response'] = openai.chat_completions(messages=t.message, model='gpt-4o-mini-2024-07-18', max_tokens=500)
t['answer'] = t.response.choices[0].message.content

MAX_VIDEO_SIZE_MB = 35

def process_and_generate_post(video_file, social_media_type):
    if not video_file:
        return "Please upload a video file.", None

    try:
        # Check video file size
        video_size = os.path.getsize(video_file) / (1024 * 1024)  # Convert to MB
        if video_size > MAX_VIDEO_SIZE_MB:
            return f"The video file is larger than {MAX_VIDEO_SIZE_MB} MB. Please upload a smaller file.", None

        # # Insert a video into the table. Pixeltable supports referencing external data sources like URLs
        t.insert([{
            "video": video_file,
            "sm_type": social_media_type
        }])

        # Retrieve Social media posts
        social_media_post = t.select(t.answer).tail(1)['answer'][0]

        # Retrieve Audio
        audio = t.select(t.audio).tail(1)['audio'][0]

        # Retrieve thumbnails
        thumbnails = frames_view.select(frames_view.frame).tail(4)['frame']
      
        # Retrieve Pixeltable Table containing all videos and stored data
        df_output = t.collect().to_pandas()

        #Display content
        return social_media_post, thumbnails, df_output, audio

    except Exception as e:
        return f"An error occurred: {str(e)}", None

# Gradio Interface
import gradio as gr

def gradio_interface():
    with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
        gr.Markdown(
            """<p>
            <img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png" alt="Pixeltable" width="20%" />
            <h1>Video to Social Media Post Generator</h1>
            <h3>Key functionalities demonstrated in this example:</h3>
            </p>
            <ul>
  <li><strong>Video Data Management:</strong> Creating tables and views to store and organize video data.</li>
  <li><strong>Automated Video Processing:</strong> Extracting frames and audio from videos.</li>
  <li><strong>Data Transformation:</strong> Computing and storing metadata, transcriptions, and AI-generated content.</li>
  <li><strong>AI Integration:</strong> Utilizing OpenAI's GPT and Whisper models for transcription and content generation.</li>
  <li><strong>Custom Functions:</strong> Defining user-defined functions (UDFs) for specialized tasks like prompt construction.</li>
  <li><strong>Data Persistence:</strong> Storing transformed data and AI outputs for easy retrieval and analysis.</li>
  <li><strong>Gradio Integration:</strong> Creating an interactive web interface for easy user interaction with Pixeltable's functionalities.</li>
  </ul>
            """
        )

        with gr.Row():
            with gr.Column():
                video_input = gr.Video(
                    label=f"Upload Video File (max {MAX_VIDEO_SIZE_MB} MB):",
                    include_audio=True,
                    max_length=300,
                    height='400px',
                    autoplay=True
                )
                social_media_type = gr.Dropdown(
                    choices=["X (Twitter)", "Facebook", "LinkedIn", "Instagram"],
                    label="Select Social Media Platform:",
                    value="X (Twitter)",
                )
                generate_btn = gr.Button("Generate Post")

                gr.Examples(
            examples=[["example1.mp4"], ["example2.mp4"], ["example3.mp4"]],
            inputs=[video_input]
        )
            with gr.Column():
                output = gr.Textbox(label="Generated Social Media Post", show_copy_button=True)
                thumbnail = gr.Gallery(
                    label="Pick your favorite Post Thumbnail",
                    show_download_button=True,
                    show_fullscreen_button=True,
                    height='400px'
                )
                audio = gr.Audio()
                
        df_output = gr.DataFrame(label="Pixeltable Table")

        generate_btn.click(
            fn=process_and_generate_post,
            inputs=[video_input, social_media_type],
            outputs=[output, thumbnail, df_output, audio],
        )

        gr.HTML(
            """
                <div class="footer">
                    <p>Pixeltable is a declarative interface for working with text, images, embeddings, and even video, enabling you to store, transform, index, and iterate on data. Powered solely by <a href="https://github.com/pixeltable/pixeltable" style="text-decoration: underline;" target="_blank">Pixeltable</a> - running OpenAI (gpt-4o-mini-2024-07-18).</a></p>
                </div>
           """
        )
    return demo

# Launch the Gradio interface
if __name__ == "__main__":
    gradio_interface().launch(show_api=False)