Spaces:
Sleeping
Sleeping
File size: 11,777 Bytes
f7689c9 d68d9a1 f7689c9 fc79458 f7689c9 24ba443 f7689c9 fc79458 f7689c9 60a653d f7689c9 4b9f9bd 60a653d f7689c9 60a653d f7689c9 fc79458 f7689c9 e4f3c0b f7689c9 38bb5e6 f7689c9 fc79458 f7689c9 fc79458 24ba443 f7689c9 fc79458 f7689c9 4b9f9bd fc79458 f7689c9 60a653d f7689c9 24ba443 f7689c9 24ba443 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import gradio as gr
import pixeltable as pxt
from pixeltable.iterators import FrameIterator, StringSplitter
from pixeltable.functions.video import extract_audio
from pixeltable.functions.audio import get_metadata
from pixeltable.functions import openai
import os
import getpass
import numpy as np
from pixeltable.functions.huggingface import sentence_transformer
# Store OpenAI API Key
if 'OPENAI_API_KEY' not in os.environ:
os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key:')
MAX_VIDEO_SIZE_MB = 35
def process_video(video_file, progress=gr.Progress()):
progress(0, desc="Initializing...")
try:
# Create a Table, a View, and Computed Columns
pxt.drop_dir('gong_demo', force=True)
pxt.create_dir('gong_demo')
calls_table = pxt.create_table(
'gong_demo.calls', {
"video": pxt.VideoType(nullable=True),
}
)
# Create computed columns to store transformations and persist outputs
calls_table['audio'] = extract_audio(calls_table.video, format='mp3')
calls_table['metadata'] = get_metadata(calls_table.audio)
calls_table['transcription'] = openai.transcriptions(audio=calls_table.audio, model='whisper-1')
calls_table['transcription_text'] = calls_table.transcription.text.astype(pxt.StringType())
sentences_view = pxt.create_view(
'gong_demo.sentences',
calls_table,
iterator=StringSplitter.create(
text=calls_table.transcription_text,
separators='sentence'
)
)
@pxt.expr_udf
def e5_embed(text: str) -> np.ndarray:
return sentence_transformer(text, model_id='intfloat/e5-large-v2')
sentences_view.add_embedding_index('text', string_embed=e5_embed)
progress(0.2, desc="Creating UDFs...")
# Custom User-Defined Function (UDF) for Generating Insights
@pxt.udf
def generate_insights(transcription: str) -> list[dict]:
system_msg = 'You are an AI assistant that analyzes call transcriptions. Analyze the following call transcription and provide insights on: 1. Main topics discussed 2. Action items 3. Sentiment analysis 4. Key questions asked'
user_msg = f'Transcription: "{transcription}"'
return [
{'role': 'system', 'content': system_msg},
{'role': 'user', 'content': user_msg}
]
# Apply the UDF to create a new column
calls_table['insights_prompt'] = generate_insights(calls_table.transcription_text)
progress(0.4, desc="Generating insights...")
# Generate insights using OpenAI's chat completion API
calls_table['insights_response'] = openai.chat_completions(messages=calls_table.insights_prompt, model='gpt-3.5-turbo', max_tokens=500)
# Extract the content of the response
calls_table['insights'] = calls_table.insights_response.choices[0].message.content
if not video_file:
return "Please upload a video file.", ""
# Check video file size
video_size = os.path.getsize(video_file) / (1024 * 1024) # Convert to MB
if video_size > MAX_VIDEO_SIZE_MB:
return f"The video file is larger than {MAX_VIDEO_SIZE_MB} MB. Please upload a smaller file.", ""
progress(0.6, desc="Processing video...")
# Insert a video into the table
calls_table.insert([{"video": video_file}])
progress(0.8, desc="Retrieving results...")
# Retrieve transcription and insights
result = calls_table.select(calls_table.transcription_text, calls_table.insights, calls_table.audio).tail(1)
transcription = result['transcription_text'][0]
insights = result['insights'][0]
audio = calls_table.select(calls_table.audio).tail(1)['audio'][0]
progress(1.0, desc="Processing complete")
return transcription, insights, audio, "Processing complete"
except Exception as e:
return f"An error occurred during video processing: {str(e)}", ""
# Perform similarity search
def similarity_search(query, num_results, progress=gr.Progress()):
sentences_view = pxt.get_table('gong_demo.sentences')
progress(0.5, desc="Performing search...")
sim = sentences_view.text.similarity(query)
results = sentences_view.order_by(sim, asc=False).limit(num_results).select(sentences_view.text).collect().to_pandas()
progress(1.0, desc="Search complete")
return results
def chatbot_response(message, chat_history):
@pxt.udf
def create_chatbot_prompt(context: str, question: str) -> list[dict]:
system_message = "You are an AI assistant that answers questions about a call based on the provided context. If the answer cannot be found in the context, say that you don't know."
user_message = f"Context:\n{context}\n\nQuestion: {question}"
return [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
try:
sentences_view = pxt.get_table('gong_demo.sentences')
# Perform similarity search to get relevant context
sim = sentences_view.text.similarity(message)
context = sentences_view.order_by(sim, asc=False).limit(5).select(sentences_view.text, sim=sim).collect()
# Prepare the context for the prompt
context_text = "\n".join([row['text'] for row in context])
# Create a temporary table for the chatbot interaction
temp_table = pxt.create_table('gong_demo.temp_chatbot', {'question': pxt.StringType()})
temp_table.insert([{'question': message}])
# Create computed columns for the prompt and response
temp_table['chatbot_prompt'] = create_chatbot_prompt(context_text, temp_table.question)
temp_table['chatbot_response'] = openai.chat_completions(
messages=temp_table.chatbot_prompt,
model='gpt-4o-mini-2024-07-18',
max_tokens=300
)
temp_table['answer'] = temp_table.chatbot_response.choices[0].message.content
answer = temp_table.select(temp_table.answer).collect()['answer'][0]
# Clean up the temporary table
pxt.drop_table('gong_demo.temp_chatbot', force=True)
chat_history.append((message, answer))
return "", chat_history # Return both expected outputs
except Exception as e:
error_message = f"An error occurred: {str(e)}"
chat_history.append((message, error_message))
return "", chat_history # Return both expec
# Gradio interface
with gr.Blocks(theme=gr.themes.Base()) as demo:
gr.Markdown(
"""
<div style="text-align: left; margin-bottom: 20px;">
<img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png" alt="Pixeltable" style="max-width: 150px;" />
<h1 style="margin-top: 10px;">Call Analysis AI Tool</h1>
</div>
"""
)
gr.HTML(
"""
<p>
<a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #F25022; text-decoration: none; font-weight: bold;">Pixeltable</a> is a declarative interface for working with text, images, embeddings, and even video, enabling you to store, transform, index, and iterate on data.
</p>
"""
)
with gr.Row():
with gr.Column():
with gr.Accordion("π― What does it do?", open=False):
gr.Markdown("""
- ποΈ Transcribes call audio to text
- π‘ Generates insights and key points
- π Enables content-based similarity search
- π€ Provides an AI chatbot for in-depth analysis
- π Offers summaries of call data
""")
with gr.Column():
with gr.Accordion("π οΈ How does it work?", open=False):
gr.Markdown("""
1. π€ Upload your call recording (video)
2. βοΈ AI processes and analyzes the content
3. π Review the transcript and generated insights
4. π Use similarity search to explore specific topics
5. π¬ Interact with the AI chatbot for deeper understanding
""")
with gr.Row():
with gr.Column(scale=1):
video_file = gr.Video(
label=f"Upload Call Recording (max {MAX_VIDEO_SIZE_MB} MB)",
include_audio=True,
autoplay=False
)
process_btn = gr.Button("Analyze Call", variant="primary")
status_output = gr.Textbox(label="Status", interactive=False)
with gr.Column(scale=2):
with gr.Tabs() as tabs:
with gr.TabItem("π Transcript"):
output_transcription = gr.Textbox(label="Call Transcription", lines=10)
with gr.TabItem("π‘ Insights"):
output_insights = gr.Textbox(label="Key Takeaways", lines=20)
with gr.TabItem("π΅ Audio"):
audio = gr.Audio(label="Extracted audio", type="filepath", show_download_button=True)
with gr.TabItem("π Search"):
with gr.Row():
similarity_query = gr.Textbox(label="Search Query", placeholder="Enter a topic or phrase to search for")
num_results = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of Results")
similarity_search_btn = gr.Button("Search", variant="secondary")
similarity_results = gr.DataFrame(
headers=["Relevant Text"],
label="Search Results",
wrap=True
)
with gr.TabItem("π€ AI Assistant"):
chatbot = gr.Chatbot(height=400, label="Chat with AI about the call")
with gr.Row():
msg = gr.Textbox(label="Ask a question about the call", placeholder="e.g., What were the main points discussed?", scale=4)
send_btn = gr.Button("Send", variant="secondary", scale=1)
clear = gr.Button("Clear Chat")
gr.Examples(
examples=[
"What were the main topics discussed in this call?",
"Can you summarize the action items mentioned?",
"What was the overall sentiment of the conversation?",
"Were there any objections raised by the client?",
"What features or products were highlighted during the call?",
],
inputs=msg,
)
process_btn.click(
process_video,
inputs=[video_file],
outputs=[output_transcription, output_insights, audio, status_output],
show_progress="full"
)
similarity_search_btn.click(
similarity_search,
inputs=[similarity_query, num_results],
outputs=[similarity_results]
)
msg.submit(chatbot_response, [msg, chatbot], [msg, chatbot])
send_btn.click(chatbot_response, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch(show_api=False, allowed_paths=[os.path.expanduser("~/.pixeltable/media")]) |