File size: 31,244 Bytes
89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb d2cb9df 89c85fb d2cb9df 89c85fb d2cb9df 89c85fb f257889 89c85fb 3097a6c 89c85fb f257889 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb 3097a6c 89c85fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 |
import gradio as gr
import yfinance as yf
import pandas as pd
import numpy as np
from datetime import datetime
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pixeltable as pxt
from pixeltable.functions import openai
import json
import os
import getpass
from typing import Dict, Any
# Set up OpenAI API key
if 'OPENAI_API_KEY' not in os.environ:
os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key: ')
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, (np.int_, np.intc, np.intp, np.int8,
np.int16, np.int32, np.int64, np.uint8,
np.uint16, np.uint32, np.uint64)):
return int(obj)
elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)):
return float(obj)
elif isinstance(obj, (np.ndarray,)):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
def safe_json_serialize(obj):
return json.dumps(obj, cls=NumpyEncoder)
def calculate_basic_indicators(data: pd.DataFrame) -> pd.DataFrame:
df = data.copy()
# Moving averages
df['MA20'] = df['Close'].rolling(window=20).mean()
df['MA50'] = df['Close'].rolling(window=50).mean()
df['MA200'] = df['Close'].rolling(window=200).mean()
# RSI
delta = df['Close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
df['RSI'] = 100 - (100 / (1 + rs))
# MACD
exp1 = df['Close'].ewm(span=12, adjust=False).mean()
exp2 = df['Close'].ewm(span=26, adjust=False).mean()
df['MACD'] = exp1 - exp2
df['MACD_Signal'] = df['MACD'].ewm(span=9, adjust=False).mean()
return df.ffill().bfill()
@pxt.udf
def generate_analysis_prompt(data: str, analysis_type: str, time_horizon: str,
risk_tolerance: str, investment_style: str,
technical_depth: str) -> list[dict]:
"""Generate a structured prompt for AI analysis"""
# Create specific guidance based on parameters
time_horizon_guidance = {
'short': 'Focus on short-term trading opportunities within 1-3 months. Emphasize technical signals and immediate catalysts.',
'medium': 'Balance short-term opportunities with medium-term trends over 3-12 months. Consider both technical and fundamental factors.',
'long': 'Prioritize long-term growth potential over 1+ years. Emphasize fundamental analysis and strategic positioning.'
}
risk_tolerance_guidance = {
'conservative': 'Prioritize capital preservation. Focus on stable, large-cap stocks with strong fundamentals. Suggest conservative options strategies like covered calls.',
'moderate': 'Balance growth opportunities with risk management. Consider mid-cap stocks and moderate options strategies.',
'aggressive': 'Seek high-growth opportunities. Include small-cap stocks and more aggressive options strategies in the analysis.'
}
investment_style_guidance = {
'value': 'Focus on valuation metrics, margin of safety, and undervalued opportunities.',
'growth': 'Emphasize revenue growth, market expansion, and future potential.',
'momentum': 'Focus on price trends, relative strength, and technical indicators.',
'balanced': 'Consider both value and growth factors, maintaining a balanced perspective.',
'income': 'Prioritize dividend yield, payout ratio, and income-generating options strategies.'
}
analysis_depth = {
'comprehensive': 'Provide detailed analysis across all categories.',
'quantitative': 'Focus on numerical metrics and statistical analysis.',
'technical': 'Emphasize technical analysis and chart patterns.'
}
technical_guidance = {
'basic': 'Focus on essential technical indicators (MA, RSI, MACD).',
'advanced': 'Include advanced technical analysis including Fibonacci levels, Elliott Wave patterns, and advanced options analysis.'
}
system_prompt = f'''You are a senior investment advisor and market analyst with decades of experience, holding CFA and CMT certifications. Provide analysis tailored to the following parameters:
TIME HORIZON: {time_horizon.upper()}
{time_horizon_guidance[time_horizon]}
RISK PROFILE: {risk_tolerance.upper()}
{risk_tolerance_guidance[risk_tolerance]}
INVESTMENT STYLE: {investment_style.upper()}
{investment_style_guidance[investment_style]}
ANALYSIS FOCUS: {analysis_type.upper()}
{analysis_depth[analysis_type]}
TECHNICAL DEPTH: {technical_depth.upper()}
{technical_guidance[technical_depth]}
Structure your response using EXACTLY the following format and sections:
SUMMARY
Provide a clear 2-3 sentence executive summary aligned with the specified time horizon ({time_horizon}) and risk tolerance ({risk_tolerance}).
TECHNICAL ANALYSIS
{technical_guidance[technical_depth]}
β’ Moving Averages: Analyze trends with emphasis on {time_horizon} timeframe
β’ RSI Analysis: Current RSI level and implications
β’ MACD Analysis: Signal trends relevant to {time_horizon} horizon
β’ Volume Analysis: Notable volume patterns and implications
{"β’ Advanced Patterns: Fibonacci levels, Elliott Wave analysis" if technical_depth == "advanced" else ""}
MARKET CONTEXT
β’ Sector Analysis: {"Long-term industry trends and positioning" if time_horizon == "long" else "Short-term sector momentum" if time_horizon == "short" else "Medium-term sector outlook"}
β’ {"Fundamental Drivers: Key growth catalysts" if investment_style == "growth" else "Value Metrics: Key valuation catalysts" if investment_style == "value" else "Market Dynamics: Key price catalysts"}
β’ Economic Impact: Factors relevant to {time_horizon} horizon
RISKS
β’ Identify and quantify risks specific to {risk_tolerance} risk tolerance
β’ Focus on {time_horizon} horizon risks
β’ {"Include volatility analysis" if technical_depth == "advanced" else ""}
OPPORTUNITIES
β’ Align opportunities with {investment_style} style
β’ Focus on {time_horizon} timeline
β’ Match risk/reward to {risk_tolerance} profile
OPTIONS STRATEGY
{"β’ Advanced Options Analysis: Complex strategies and volatility analysis" if technical_depth == "advanced" else "β’ Basic Options Strategies: Simple hedging and income generation"}
β’ Tailor strategies to {risk_tolerance} risk tolerance
β’ Focus on {time_horizon} expiration cycles
β’ Match strategies to {investment_style} style objectives
RECOMMENDATION
β’ Provide specific recommendations aligned with:
- {time_horizon.capitalize()} time horizon
- {risk_tolerance.capitalize()} risk tolerance
- {investment_style.capitalize()} investment style
β’ Include position sizing appropriate for risk level
β’ Specify entry, exit, and stop-loss levels
β’ {"Include advanced technical levels" if technical_depth == "advanced" else "Focus on key support/resistance levels"}
IMPORTANT: This analysis is for informational purposes only. All investments carry risk. Please consult with a licensed financial advisor before making investment decisions.'''
return [
{'role': 'system', 'content': system_prompt},
{'role': 'user', 'content': f'Analyze this market data considering the specified parameters:\n{data}'}
]
def parse_analysis_response(response: str) -> Dict[str, str]:
"""Parse the structured AI response into sections with support for markdown formatting"""
sections = {
'SUMMARY': None,
'TECHNICAL ANALYSIS': None,
'MARKET CONTEXT': None,
'RISKS': None,
'OPPORTUNITIES': None,
'OPTIONS STRATEGY': None,
'RECOMMENDATION': None
}
current_section = None
buffer = []
if not response or not response.strip():
return {k: "Analysis not available" for k in sections.keys()}
for line in response.split('\n'):
line = line.strip()
matched_section = None
for section in sections.keys():
# Remove asterisks and check for exact match
cleaned_line = line.replace('*', '').strip()
if cleaned_line == section:
matched_section = section
break
if matched_section:
# Save previous section if exists
if current_section and buffer:
sections[current_section] = '\n'.join(buffer).strip()
current_section = matched_section
buffer = []
elif current_section and line:
# Clean up markdown formatting in content
cleaned_content = line.replace('*', '').strip()
if cleaned_content: # Only add non-empty lines
buffer.append(cleaned_content)
if current_section and buffer:
sections[current_section] = '\n'.join(buffer).strip()
section_messages = {
'SUMMARY': 'Market analysis summary not available',
'TECHNICAL ANALYSIS': 'Technical analysis not available',
'MARKET CONTEXT': 'Market context information not available',
'RISKS': 'Risk assessment not available',
'OPPORTUNITIES': 'Opportunity analysis not available',
'OPTIONS STRATEGY': 'Options trading analysis not available',
'RECOMMENDATION': 'Investment recommendation not available'
}
for key in sections:
if sections[key] is None or not sections[key].strip():
sections[key] = section_messages[key]
return sections
def create_visualization(data: pd.DataFrame, technical_depth: str) -> go.Figure:
fig = make_subplots(
rows=3 if technical_depth == 'advanced' else 2,
cols=1,
shared_xaxes=True,
vertical_spacing=0.05,
subplot_titles=('Price & Moving Averages', 'Volume', 'RSI' if technical_depth == 'advanced' else None)
)
fig.add_trace(
go.Candlestick(
x=data.index,
open=data['Open'],
high=data['High'],
low=data['Low'],
close=data['Close'],
name='Price',
increasing_line_color='#26A69A',
decreasing_line_color='#EF5350'
),
row=1, col=1
)
colors = {'MA20': '#1E88E5', 'MA50': '#FFC107', 'MA200': '#7B1FA2'}
for ma, color in colors.items():
fig.add_trace(
go.Scatter(
x=data.index,
y=data[ma],
name=ma,
line=dict(color=color, width=1.5)
),
row=1, col=1
)
colors = ['#26A69A' if close >= open_price else '#EF5350'
for close, open_price in zip(data['Close'].values, data['Open'].values)]
fig.add_trace(
go.Bar(
x=data.index,
y=data['Volume'],
name='Volume',
marker_color=colors
),
row=2, col=1
)
if technical_depth == 'advanced':
fig.add_trace(
go.Scatter(
x=data.index,
y=data['RSI'],
name='RSI',
line=dict(color='#7C4DFF', width=1.5)
),
row=3, col=1
)
fig.add_hline(y=70, line_dash="dash", line_color="red", row=3, col=1)
fig.add_hline(y=30, line_dash="dash", line_color="green", row=3, col=1)
fig.update_layout(
height=800,
template='plotly_white',
showlegend=True,
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
)
)
fig.update_yaxes(title_text="Price", row=1, col=1)
fig.update_yaxes(title_text="Volume", row=2, col=1)
if technical_depth == 'advanced':
fig.update_yaxes(title_text="RSI", row=3, col=1)
return fig
def process_outputs(ticker_symbol, analysis_type, time_horizon, risk_tolerance,
investment_style, technical_depth, include_market_context=True,
max_positions=3):
try:
# Initialize Pixeltable
pxt.drop_dir('financial_analysis', force=True)
pxt.create_dir('financial_analysis')
data_table = pxt.create_table(
'financial_analysis.stock_data',
{
'ticker': pxt.StringType(),
'data': pxt.StringType(),
'timestamp': pxt.TimestampType()
}
)
# Fetch and process data
stock = yf.Ticker(ticker_symbol.strip().upper())
market_data = stock.history(period='1y')
if market_data.empty:
raise ValueError("No data found for the specified ticker symbol.")
options_data = stock.options # Get available expiration dates
if len(options_data) > 0:
nearest_expiry = options_data[0]
opt_chain = stock.option_chain(nearest_expiry)
options_info = {
'Nearest Expiry': nearest_expiry,
'Call Volume': int(opt_chain.calls['volume'].sum()),
'Put Volume': int(opt_chain.puts['volume'].sum()),
'Put/Call Ratio': float(opt_chain.puts['volume'].sum() / opt_chain.calls['volume'].sum()),
'Implied Volatility': float(opt_chain.calls['impliedVolatility'].mean())
}
else:
options_info = {
'Nearest Expiry': 'N/A',
'Call Volume': 0,
'Put Volume': 0,
'Put/Call Ratio': 0,
'Implied Volatility': 0
}
technical_data = calculate_basic_indicators(market_data)
market_data_json = technical_data.to_json(date_format='iso')
# Store data and generate analysis
data_table.insert([{
'ticker': ticker_symbol.upper(),
'data': market_data_json,
'timestamp': datetime.now()
}])
data_table['prompt'] = generate_analysis_prompt(
data_table.data,
analysis_type,
time_horizon,
risk_tolerance,
investment_style,
technical_depth
)
data_table['analysis'] = openai.chat_completions(
messages=data_table.prompt,
model='gpt-4o-mini-2024-07-18',
temperature=0.7,
max_tokens=1000
)
try:
analysis_text = data_table.select(
analysis=data_table.analysis.choices[0].message.content
).tail(1)['analysis'][0]
parsed_analysis = parse_analysis_response(analysis_text)
except Exception as analysis_error:
print(f"Analysis error: {str(analysis_error)}")
parsed_analysis = parse_analysis_response("") # This will return default messages
# Prepare company info with proper JSON formatting
company_info_data = {
'Name': str(stock.info.get('longName', 'N/A')),
'Sector': str(stock.info.get('sector', 'N/A')),
'Industry': str(stock.info.get('industry', 'N/A')),
'Exchange': str(stock.info.get('exchange', 'N/A'))
}
raw_llm_output = ""
try:
raw_llm_output = data_table.select(
analysis=data_table.analysis.choices[0].message.content
).tail(1)['analysis'][0]
parsed_analysis = parse_analysis_response(raw_llm_output)
except Exception as analysis_error:
print(f"Analysis error: {str(analysis_error)}")
parsed_analysis = parse_analysis_response("")
raw_llm_output = f"Error processing analysis: {str(analysis_error)}"
try:
current_price = float(technical_data['Close'].iloc[-1])
previous_price = float(technical_data['Close'].iloc[-2])
daily_change = float((current_price / previous_price - 1) * 100)
volume = int(technical_data['Volume'].iloc[-1])
rsi = float(technical_data['RSI'].iloc[-1])
except (IndexError, KeyError, TypeError):
current_price = daily_change = volume = rsi = 0
market_stats_data = {
'Current Price': f"${current_price:.2f}",
'Daily Change': f"{daily_change:.2f}%",
'Volume': f"{volume:,}",
'RSI': f"{rsi:.2f}"
}
technical_data_with_time = technical_data.reset_index()
technical_data_with_time['Date'] = technical_data_with_time['Date'].dt.strftime('%Y-%m-%d %H:%M:%S')
# Create visualization
plot = create_visualization(technical_data, technical_depth)
return (
json.dumps(company_info_data),
json.dumps(market_stats_data),
json.dumps(options_info), # Add options info to return values
plot,
parsed_analysis['SUMMARY'],
parsed_analysis['TECHNICAL ANALYSIS'],
parsed_analysis['MARKET CONTEXT'],
parsed_analysis['RISKS'],
parsed_analysis['OPPORTUNITIES'],
parsed_analysis['OPTIONS STRATEGY'], # Add options strategy
parsed_analysis['RECOMMENDATION'],
technical_data_with_time,
raw_llm_output
)
except Exception as e:
error_msg = f"Error processing data: {str(e)}"
empty_json = json.dumps({})
no_data_msg = "Analysis not available due to data processing error"
empty_df = pd.DataFrame()
return (
empty_json,
empty_json,
empty_json,
None,
no_data_msg,
no_data_msg,
no_data_msg,
no_data_msg,
no_data_msg,
no_data_msg,
no_data_msg,
empty_df,
f"Error occurred: {str(e)}"
)
def create_interface() -> gr.Blocks:
"""Create the production-ready Gradio interface"""
with gr.Blocks(theme=gr.themes.Base()) as demo:
# Header
gr.Markdown(
"""
# π AI Financial Analysis Platform
AI-powered market analysis and technical indicators powered by OpenAI GPT models and Pixeltable.
"""
)
gr.HTML(
"""
<div style="background-color: #FEE2E2; border: 1px solid #FECACA; color: #991B1B; border-radius: 8px; padding: 15px; margin: 15px 0;">
<strong>β οΈ Important Data Reliability Notice:</strong>
<p style="margin: 8px 0;">
This is a demonstration platform showcasing how to leverage LLMs for financial analysis.
The accuracy of information, data retrieved from yfinance, and calculated metrics are NOT guaranteed.
Use at your own risk. The creators and operators of this tool are not responsible for any financial losses or decisions made based on this analysis. This tool is intended for demonstration and educational purposes only.
</p>
</div>
"""
)
with gr.Row():
with gr.Column():
with gr.Accordion("π― What does it do?", open=False):
gr.Markdown("""
This platform provides comprehensive financial analysis tools:
1. π **Technical Analysis**: Advanced indicators, e.g. RSI, and MACD
2. π€ **AI-Powered Insights**: Intelligent market analysis/recommendations
3. π **Interactive Charts**: Visual representation of movements/indicators
4. π‘ **Investment Context**: Market conditions and sector analysis
5. β‘ **Real-time Data**: Up-to-date information through Yahoo Finance
6. π― **Personalized Analysis**: Tailored to your style/risk tolerance
""")
with gr.Column():
with gr.Accordion("π οΈ How does it work?", open=False):
gr.Markdown("""
The platform leverages several advanced technologies:
1. π¦ **Data Processing**: Pixeltable manages and orchestrate data
2. π **Technical Indicators**: Custom algorithms calculate market metrics
3. π€ **AI Analysis**: Advanced language models provide market insights
4. π **Visualization**: Interactive charts using Plotly
5. π **Real-time Updates**: Direct connection to market data feeds
6. πΎ **Data Persistence**: Reliable storage and retrieval of insights
""")
# Disclaimer
gr.HTML(
"""
<div style="background-color: #FFF4E5; border: 1px solid #FFE0B2; color: #663C00; border-radius: 8px; padding: 15px; margin: 15px 0;">
<strong>β οΈ Disclaimer:</strong>
<p style="margin: 8px 0;">
This tool provides financial analysis for informational purposes only and should not be considered as financial advice, please:
</p>
<ul style="margin: 8px 0;">
<li>Consult with qualified financial advisors</li>
<li>Conduct your own research</li>
<li>Consider your personal financial situation</li>
<li>Be aware that past performance does not guarantee future results</li>
<li>Understand that all investments carry risk</li>
</ul>
</div>
"""
)
with gr.Row():
# Left sidebar for inputs
with gr.Column(scale=1):
with gr.Row():
gr.Markdown("### π Analysis Parameters")
with gr.Row():
ticker_input = gr.Textbox(
label="Stock Ticker",
placeholder="e.g., AAPL",
max_lines=1
)
analysis_type = gr.Radio(
choices=['comprehensive', 'quantitative', 'technical'],
label="Analysis Type",
value='comprehensive'
)
technical_depth = gr.Radio(
choices=['basic', 'advanced'],
label="Technical Depth",
value='advanced'
)
with gr.Row():
gr.Markdown("### π― Investment Profile")
with gr.Row():
time_horizon = gr.Radio(
choices=['short', 'medium', 'long'],
label="Time Horizon",
value='medium'
)
risk_tolerance = gr.Radio(
choices=['conservative', 'moderate', 'aggressive'],
label="Risk Tolerance",
value='moderate'
)
investment_style = gr.Dropdown(
choices=['value', 'growth', 'momentum', 'balanced', 'income'],
label="Investment Style",
value='balanced'
)
analyze_btn = gr.Button("π Analyze Stock", variant="primary")
with gr.Row():
with gr.Column(scale=3):
with gr.Tabs() as tabs:
with gr.TabItem("π Analysis Dashboard"):
# Top row with company info and market stats
with gr.Row(equal_height=True):
with gr.Column(scale=1):
company_info = gr.JSON(
label="Company Information",
height=150
)
with gr.Column(scale=1):
market_stats = gr.JSON(
label="Market Statistics",
height=150
)
with gr.Column(scale=1):
options_info = gr.JSON(
label="Options Market Data",
height=150
)
with gr.TabItem("π Historical Data"):
technical_data = gr.DataFrame(
headers=["Date", "Open", "High", "Low", "Close",
"Volume", "MA20", "MA50", "MA200", "RSI",
"MACD", "MACD_Signal"],
)
with gr.TabItem("π Debug View"):
raw_output = gr.Textbox(
label="Raw LLM Output",
lines=10,
max_lines=20,
show_label=True,
interactive=False
)
gr.Markdown("""
### Debug Information
This tab shows the raw output from the language model before parsing.
Use this to diagnose any issues with the analysis display.
""")
# Technical analysis chart
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
gr.Markdown("### π Technical Analysis Chart")
with gr.Row():
plot_output = gr.Plot()
# AI Analysis section
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
gr.Markdown("### π€ AI Analysis")
with gr.Row():
summary = gr.Textbox(
label="Executive Summary",
lines=3,
max_lines=5,
show_label=True
)
with gr.Row():
with gr.Column(scale=1):
tech_analysis = gr.Textbox(
label="Technical Analysis",
lines=8,
max_lines=10,
show_label=True
)
market_context = gr.Textbox(
label="Market Context",
lines=4,
max_lines=6,
show_label=True
)
with gr.Column(scale=1):
risks = gr.Textbox(
label="Key Risks",
lines=5,
max_lines=7,
show_label=True
)
opportunities = gr.Textbox(
label="Key Opportunities",
lines=5,
max_lines=7,
show_label=True
)
with gr.Row():
options_strategy = gr.Textbox(
label="Options Trading Strategy",
lines=8,
max_lines=10,
show_label=True
)
with gr.Row():
recommendation = gr.Textbox(
label="Investment Recommendation",
lines=3,
max_lines=5,
show_label=True
)
gr.Examples(
examples=[
["AAPL", "comprehensive", "medium", "moderate", "balanced", "advanced"],
["MSFT", "technical", "short", "aggressive", "momentum", "basic"],
["GOOGL", "quantitative", "long", "conservative", "value", "advanced"]
],
inputs=[
ticker_input, analysis_type, time_horizon, risk_tolerance,
investment_style, technical_depth
]
)
# Footer
gr.HTML(
"""
<div style="margin-top: 2rem; padding-top: 1rem; border-top: 1px solid #e5e7eb;">
<div style="display: flex; justify-content: space-between; align-items: center; flex-wrap: wrap; gap: 1rem;">
<div style="flex: 1;">
<h4 style="margin: 0; color: #374151;">π Built with Pixeltable</h4>
<p style="margin: 0.5rem 0; color: #6b7280;">
Open Source AI Data infrastructure for building intelligent applications.
</p>
</div>
<div style="flex: 1;">
<h4 style="margin: 0; color: #374151;">π Resources</h4>
<div style="display: flex; gap: 1.5rem; margin-top: 0.5rem;">
<a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #4F46E5; text-decoration: none; display: flex; align-items: center; gap: 0.25rem;">
π» GitHub
</a>
<a href="https://docs.pixeltable.com" target="_blank" style="color: #4F46E5; text-decoration: none; display: flex; align-items: center; gap: 0.25rem;">
π Documentation
</a>
<a href="https://huggingface.co/Pixeltable" target="_blank" style="color: #4F46E5; text-decoration: none; display: flex; align-items: center; gap: 0.25rem;">
π€ Hugging Face
</a>
</div>
</div>
</div>
<p style="margin: 1rem 0 0; text-align: center; color: #9CA3AF; font-size: 0.875rem;">
Β© 2024 AI Financial Analysis Platform powered by Pixeltable.
This work is licensed under the Apache License 2.0.
</p>
</div>
"""
)
analyze_btn.click(
process_outputs,
inputs=[
ticker_input, analysis_type, time_horizon, risk_tolerance,
investment_style, technical_depth
],
outputs=[
company_info, market_stats, options_info, plot_output,
summary, tech_analysis, market_context,
risks, opportunities, options_strategy, recommendation,
technical_data, raw_output
]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch() |