Spaces:
Build error
Build error
File size: 7,948 Bytes
806d367 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
from config import HAS_CUDA, MODEL, DEVICE_MAP, TRAINING_PARAMS, LORA_TRAINING_PARAMS, GENERATION_PARAMS
import os
import gc
import torch
import transformers
import peft
import datasets
from contextlib import nullcontext
class Trainer():
def __init__(self):
self.model = None
self.model_name = None
self.lora_name = None
self.loras = {}
self.tokenizer = None
self.trainer = None
def unload_model(self):
del self.model
del self.tokenizer
self.model = None
self.model_name = None
self.tokenizer = None
if (HAS_CUDA):
with torch.no_grad():
torch.cuda.empty_cache()
gc.collect()
def load_model(self, model_name, force=False, **kwargs):
assert model_name is not None
if (model_name == self.model_name and not force):
return
if (self.model is not None):
self.unload_model()
self.model = transformers.AutoModelForCausalLM.from_pretrained(
model_name,
device_map=DEVICE_MAP,
load_in_8bit=True,
torch_dtype=torch.float16,
)
if model_name.startswith('decapoda-research/llama'):
self.tokenizer = transformers.LlamaTokenizer.from_pretrained(model_name)
else:
self.tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
self.tokenizer.pad_token_id = 0
self.model_name = model_name
def load_lora(self, lora_name, replace_model=True):
assert self.model is not None
assert lora_name is not None
if (lora_name == self.lora_name):
return
if lora_name in self.loras:
self.lora_name = lora_name
self.model.set_adapter(lora_name)
return
peft_config = peft.PeftConfig.from_pretrained(lora_name)
if not replace_model:
assert peft_config.base_model_name_or_path == self.model_name
if peft_config.base_model_name_or_path != self.model_name:
self.load_model(peft_config.base_model_name_or_path)
self.loras = {}
assert self.model_name is not None
assert self.model is not None
if hasattr(self.model, 'load_adapter'):
self.model.load_adapter(lora_name, adapter_name=lora_name)
else:
self.model = peft.PeftModel.from_pretrained(self.model, lora_name, adapter_name=lora_name)
self.model.set_adapter(lora_name)
if (self.model_name.startswith('cerebras')):
self.model.half()
self.lora_name = lora_name
self.loras[lora_name] = True
def unload_lora(self):
self.lora_name = None
def generate(self, prompt, **kwargs):
assert self.model is not None
assert self.model_name is not None
assert self.tokenizer is not None
kwargs = { **GENERATION_PARAMS, **kwargs }
inputs = self.tokenizer(str(prompt), return_tensors="pt")
input_ids = inputs["input_ids"].to(self.model.device)
if self.model.config.pad_token_id is None:
kwargs['pad_token_id'] = self.model.config.eos_token_id
if (kwargs['do_sample']):
del kwargs['num_beams']
generation_config = transformers.GenerationConfig(
use_cache=False,
**kwargs
)
disable_lora = nullcontext()
if self.lora_name is None and hasattr(self.model, 'disable_adapter'):
disable_lora = self.model.disable_adapter()
with torch.no_grad(), disable_lora:
output = self.model.generate(
input_ids=input_ids,
attention_mask=torch.ones_like(input_ids),
generation_config=generation_config
)[0].to(self.model.device)
return self.tokenizer.decode(output, skip_special_tokens=True).strip()
def tokenize_sample(self, item, max_seq_length, add_eos_token=True):
assert self.tokenizer is not None
result = self.tokenizer(
item["text"],
truncation=True,
max_length=max_seq_length,
padding="max_length",
)
result = {
"input_ids": result["input_ids"][:-1],
"attention_mask": result["attention_mask"][:-1],
}
if (
result["input_ids"][-1] != self.tokenizer.eos_token_id
and len(result["input_ids"]) < max_seq_length
and add_eos_token
):
result["input_ids"].append(self.tokenizer.eos_token_id)
result["attention_mask"].append(1)
return result
def tokenize_training_text(self, training_text, max_seq_length, separator="\n\n\n", **kwargs):
samples = training_text.split(separator)
samples = [x.strip() for x in samples]
def to_dict(text):
return { 'text': text }
samples = [to_dict(x) for x in samples]
training_dataset = datasets.Dataset.from_list(samples)
training_dataset = training_dataset.shuffle().map(
lambda x: self.tokenize_sample(x, max_seq_length),
batched=False
)
return training_dataset
def train(self, training_text=None, new_peft_model_name=None, **kwargs):
assert self.model is not None
assert self.model_name is not None
assert self.tokenizer is not None
kwargs = { **TRAINING_PARAMS, **LORA_TRAINING_PARAMS, **kwargs }
self.lora_name = None
self.loras = {}
train_dataset = self.tokenize_training_text(training_text, **kwargs)
if hasattr(self.model, 'disable_adapter'):
self.load_model(self.model_name, force=True)
self.model = peft.prepare_model_for_int8_training(self.model)
self.model = peft.get_peft_model(self.model, peft.LoraConfig(
r=kwargs['lora_r'],
lora_alpha=kwargs['lora_alpha'],
lora_dropout=kwargs['lora_dropout'],
bias="none",
task_type="CAUSAL_LM",
))
if not os.path.exists('lora'):
os.makedirs('lora')
sanitized_model_name = self.model_name.replace('/', '_').replace('.', '_')
output_dir = f"lora/{sanitized_model_name}_{new_peft_model_name}"
training_args = transformers.TrainingArguments(
per_device_train_batch_size=kwargs['micro_batch_size'],
gradient_accumulation_steps=kwargs['gradient_accumulation_steps'],
num_train_epochs=kwargs['epochs'],
learning_rate=kwargs['learning_rate'],
fp16=True,
optim='adamw_torch',
logging_steps=20,
save_total_limit=3,
output_dir=output_dir,
)
# _trainer = self
# class LoggingCallback(transformers.TrainerCallback):
# def on_log(self, args, state, control, logs=None, **kwargs):
# _trainer.log += json.dumps(logs) + '\n'
self.trainer = transformers.Trainer(
model=self.model,
train_dataset=train_dataset,
args=training_args,
data_collator=transformers.DataCollatorForLanguageModeling(
self.tokenizer,
mlm=False,
),
# callbacks=[LoggingCallback()]
)
self.model.config.use_cache = False
result = self.trainer.train(resume_from_checkpoint=False)
self.model.save_pretrained(output_dir)
return result
if __name__ == '__main__':
t = Trainer()
t.load_model(MODEL)
prompt = "Human: How is cheese made?\n\nAssistant:"
print(t.generate(prompt))
t.load_lora('lora/melon-mango-orange')
print(t.generate(prompt))
t.unload_lora()
print(t.generate(prompt)) |