Spaces:
Sleeping
Sleeping
File size: 1,183 Bytes
d0afe25 b1b79a6 d0afe25 b1b79a6 7e624c3 b1b79a6 7e624c3 b1b79a6 7e624c3 b1b79a6 d0afe25 7e624c3 d0afe25 b1b79a6 d0afe25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
from transformers import pipeline
# Load the fine-tuned model from Hugging Face Hub
classifier = pipeline("text-classification", model="Pisethan/khmer-classifier")
# Label mapping (match this to your training label order)
label_map = {
"LABEL_0": "most_students",
"LABEL_1": "grade2_lesson",
"LABEL_2": "count_boys"
}
# Define prediction function
def predict(text):
output = classifier(text)[0]
label_id = output["label"]
label_name = label_map.get(label_id, label_id)
return f"π Label: {label_name} (Score: {output['score']:.2f})"
# Build Gradio interface
demo = gr.Interface(
fn=predict,
inputs=gr.Textbox(label="Khmer Question"),
outputs=gr.Textbox(label="Predicted Label"),
title="Khmer Prompt Classifier",
description="π§ Enter a Khmer question and get the predicted category.",
examples=[
["αα·αααααααΆααααΈα’ααααΌααααα’αααΈ?"],
["ααΎααΆααα·ααααααα»αααα»ααααΆαααΆαα?"],
["ααΆααΆααΆααΆααα·αααα
αααΎαααΆααα?"]
]
)
# Launch
demo.launch()
|