Spaces:
Runtime error
Runtime error
File size: 1,856 Bytes
7d5081f 4946d76 7d5081f 8f074bc c9ee852 8510941 8f074bc 65aee6e d234736 378eb4f 8f074bc d3e6642 39d8890 d3e6642 d234736 80882a3 d234736 8f074bc df9431b 8f074bc 662f9f2 d234736 662f9f2 d234736 39d8890 d3e6642 662f9f2 378eb4f d234736 429d718 9d13851 429d718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import streamlit as st
import time
from transformers import pipeline
import torch
st.markdown('## Text-generation OPT from Meta ')
@st.cache(allow_output_mutation=True, suppress_st_warning =True, show_spinner=False)
def get_model():
return pipeline('text-generation', model=model, do_sample=True, skip_special_tokens=True)
col1, col2 = st.columns([2,1])
with st.sidebar:
st.markdown('## Model Parameters')
max_length = st.slider('Max text length', 0, 150, 80)
num_beams = st.slider('N° tree beams search', 2, 15, 5)
early_stopping = st.selectbox(
'Early stopping text generation',
('True', 'False'), key={'True' : True, 'False': False}, index=0)
no_ngram_repeat = st.slider('Max repetition limit', 1, 5, 2)
with col1:
prompt= st.text_area('Your prompt here',
'''Who is Elon Musk?''')
with col2:
select_model = st.radio(
"Select the model to use:",
('OPT-125m', 'OPT-350m', 'OPT-1.3b'), index = 1)
if select_model == 'OPT-1.3b':
model = 'facebook/opt-1.3b'
elif select_model == 'OPT-350m':
model = 'facebook/opt-350m'
elif select_model == 'OPT-125m':
model = 'facebook/opt-125m'
with st.spinner('Loading Model... (This may take a while)'):
generator = get_model()
st.success('Model loaded correctly!')
gen = st.info('Generating text...')
answer = generator(prompt,
max_length=max_length, no_repeat_ngram_size=no_ngram_repeat,
early_stopping=early_stopping, num_beams=num_beams,
skip_special_tokens=True)
gen.empty()
lst = answer[0]['generated_text']
t = st.empty()
for i in range(len(lst)):
t.markdown("#### %s" % lst[0:i])
time.sleep(0.04) |