Spaces:
Runtime error
Runtime error
File size: 13,391 Bytes
128757a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import torch
import torch.distributed as dist
import time
from torchvision.ops import nms
import random
import numpy as np
from PIL import Image, ImageDraw
import pdb
from maskrcnn_benchmark.structures.bounding_box import BoxList
from .modulated_coco import ConvertCocoPolysToMask
from .tsv import ODTSVDataset, TSVYamlDataset
from .od_to_grounding import sanity_check_target_after_processing
class CaptionTSV(TSVYamlDataset):
def __init__(self,
yaml_file,
transforms,
return_tokens,
return_masks,
tokenizer,
caption_min_box=1,
replace_clean_label=False,
further_screen=False,
caption_conf=0.5,
caption_nms=-1,
pack_random_caption_number=0,
inference_caption=False,
sample_negative_for_grounding_data=-1,
random_pack_prob=-1.0,
no_random_pack_probability=0.0,
safeguard_positive_caption=True,
mlm_obj_for_only_positive=False,
caption_format_version="v1",
local_debug=False,
max_query_len=256,
**kwargs
):
super(CaptionTSV, self).__init__(yaml_file, None, replace_clean_label)
self.yaml_file = yaml_file
self._transforms = transforms
self.max_query_len = max_query_len
self.prepare = ConvertCocoPolysToMask(return_masks=return_masks,
return_tokens=return_tokens,
tokenizer=tokenizer,
max_query_len=max_query_len)
self.tokenizer = tokenizer
self.caption_min_box = caption_min_box
self.replace_clean_label = replace_clean_label
self.further_screen = further_screen
self.pack_random_caption_number = pack_random_caption_number
self.caption_format_version = caption_format_version
self.caption_conf = caption_conf
self.caption_nms = caption_nms
self.inference_caption = inference_caption
self.sample_negative_for_grounding_data = sample_negative_for_grounding_data
self.random_pack_prob = random_pack_prob
self.no_random_pack_probability = no_random_pack_probability
self.safeguard_positive_caption = safeguard_positive_caption
self.mlm_obj_for_only_positive = mlm_obj_for_only_positive
try:
self.rank = dist.get_rank()
except:
self.rank = 0
def __len__(self):
return super(CaptionTSV, self).__len__()
def pack_caption(self, positive_caption, negative_captions, original_tokens_positive):
if len(negative_captions) == 0:
return positive_caption, original_tokens_positive, [(0, len(positive_caption))]
if self.safeguard_positive_caption:
length_of_each_caption = []
for caption in negative_captions + [positive_caption]:
tokenized = self.tokenizer(caption, return_tensors="pt")
length_of_each_caption.append(tokenized.input_ids.size(-1))
max_length = self.max_query_len - length_of_each_caption[-1]
indexes = list(range(len(negative_captions)))
random.shuffle(indexes)
new_caption_list = [positive_caption]
for i in indexes:
if length_of_each_caption[i] < max_length:
new_caption_list.append(negative_captions[i])
max_length -= length_of_each_caption[i]
else:
new_caption_list = [positive_caption] + negative_captions
random.shuffle(new_caption_list)
new_caption = ''
for i in new_caption_list:
if i == positive_caption:
start_position = len(new_caption)
new_caption += i
if not i.endswith("."):
new_caption += "."
new_caption += " "
# shift the token positions the boxes are aligned to
for index, i in enumerate(original_tokens_positive):
original_tokens_positive[index] = [tuple(j) for j in i]
for i in original_tokens_positive:
for index, j in enumerate(i):
i[index] = (j[0] + start_position, j[1] + start_position)
return new_caption, original_tokens_positive, [(start_position, start_position + len(positive_caption))]
def __get_negative_captions__(self, idx, negative_size=7):
negative_captions = []
for i in range(negative_size):
img, anno, _, scale = super(CaptionTSV, self).__getitem__(np.random.choice(len(self)))
caption = anno["caption"]
negative_captions.append(caption)
return negative_captions
def __getitem__(self, idx):
try:
img, anno, _, scale = super(CaptionTSV, self).__getitem__(idx)
if self.inference_caption:
caption = None
if isinstance(anno, list):
caption = anno[0]["caption"] # inference mode for bing
anno = []
elif len(anno) == 1:
caption = anno["caption"] # inference mode for googlecc
anno = []
else:
caption = " ".join(anno["captions"])
anno = []
else:
'''
An example
{'img_h': 1154, 'img_w': 1600, 'caption': 'xxx', 'tokens_positive': [[[47, 50], [51, 53], [54, 59]], [[32, 35], [36, 41]], [[32, 35], [36, 41]], [[0, 3], [3, 6], [6, 10], [11, 16], [17, 19], [20, 23]], [[32, 35], [36, 41]], [[32, 35], [36, 41]]], 'bboxes': [[7.344961166381836, 10.479412078857422, 1592.2679443359375, 1090.0028076171875], [950.32861328125, 346.572021484375, 1333.2373046875, 679.3215942382812], [927.44140625, 342.7712707519531, 1389.833984375, 719.5758666992188], [90.48786163330078, 363.67572021484375, 1381.8631591796875, 1078.687744140625], [122.84217071533203, 422.6786193847656, 507.845703125, 667.2651977539062], [80.62384033203125, 416.500244140625, 563.1666259765625, 734.603271484375]], 'scores': [0.7966700196266174, 0.8952182531356812, 0.8186006546020508, 0.9995516538619995, 0.8021856546401978, 0.8923134803771973]}
'''
if len(anno["bboxes"]) < self.caption_min_box: # Retry triggered!
return self[np.random.choice(len(self))]
if self.caption_format_version == "v2":
anno = self.convert_anno_from_v2_to_v1(anno)
try:
if self.further_screen:
conf = self.caption_conf
nms_thre = self.caption_nms
bboxes = torch.as_tensor(anno["bboxes"]).float()
scores = torch.as_tensor(anno["scores"])
tokens_positive = anno["tokens_positive"]
# print("\n\n\n\n tokens_positive in original data", tokens_positive)
keep = scores > conf
scores = scores[keep]
bboxes = bboxes[keep]
tokens_positive = [i for index, i in enumerate(tokens_positive) if keep[index]]
assert (len(tokens_positive) == len(bboxes) == len(scores))
if len(bboxes) < self.caption_min_box: # Retry triggered!
return self[np.random.choice(len(self))]
if nms_thre > 0:
keep = nms(boxes=bboxes, scores=scores, iou_threshold=nms_thre)
scores = scores[keep]
bboxes = bboxes[keep]
tokens_positive = [tokens_positive[i] for i in keep]
assert (len(tokens_positive) == len(bboxes) == len(scores))
# Write back
anno["bboxes"] = bboxes.tolist()
anno["scores"] = scores.tolist()
anno["tokens_positive"] = tokens_positive
boxes = torch.as_tensor(anno["bboxes"])
if len(boxes) < self.caption_min_box: # Retry triggered!
return self[np.random.choice(len(self))]
target = BoxList(boxes, (anno["img_w"], anno["img_h"]), mode="xyxy")
target = target.clip_to_image(remove_empty=True)
caption = anno["caption"]
# print("original caption", caption)
empty_everything = False
if self.sample_negative_for_grounding_data != -1:
if random.random() < self.sample_negative_for_grounding_data:
empty_everything = True
if empty_everything:
caption = self.__get_negative_captions__(idx, negative_size=1)[0]
if self.pack_random_caption_number != 0:
if self.random_pack_prob != -1.0:
if random.random() < self.no_random_pack_probability:
negative_pack_number = 0
elif random.random() < self.random_pack_prob:
negative_pack_number = self.pack_random_caption_number
else:
negative_pack_number = np.random.choice(self.pack_random_caption_number)
else:
negative_pack_number = self.pack_random_caption_number
negative_captions = self.__get_negative_captions__(idx, negative_size=negative_pack_number)
caption, anno["tokens_positive"], greenlight_span_for_masked_lm_objective = self.pack_caption(
caption, negative_captions, anno["tokens_positive"])
else:
greenlight_span_for_masked_lm_objective = [(0, len(caption))]
if not self.mlm_obj_for_only_positive:
greenlight_span_for_masked_lm_objective = [(0, len(caption))]
new_anno = []
areas = target.area()
for i in range(len(target)):
new_anno_i = {}
new_anno_i["area"] = areas[i]
new_anno_i["iscrowd"] = 0
new_anno_i["image_id"] = idx
new_anno_i["category_id"] = 1 # following vg and others
new_anno_i["id"] = None
new_anno_i['bbox'] = target.bbox[i].numpy().tolist()
new_anno_i["tokens_positive"] = anno["tokens_positive"][i]
new_anno.append(new_anno_i)
except:
return self[np.random.choice(len(self))]
anno = new_anno
if empty_everything:
anno = []
annotations = {"image_id": idx, "annotations": anno, "caption": caption}
annotations["greenlight_span_for_masked_lm_objective"] = greenlight_span_for_masked_lm_objective
img, annotations = self.prepare(img, annotations, box_format="xyxy")
if self._transforms is not None:
img, target = self._transforms(img, target)
# add additional property
for ann in annotations:
target.add_field(ann, annotations[ann])
except:
print("Outter Retry triggered!!")
return self[np.random.choice(len(self))]
sanity_check_target_after_processing(target)
return img, target, idx
def convert_anno_from_v2_to_v1(self, anno):
flatterned_bboxes = []
flatterned_tokens_positive = []
flatterned_bboxes_scores = []
for i in range(len(anno["bboxes"])):
# i is the index for entity
for j in range(len(anno["bboxes"][i])):
# j is the index for each box
flatterned_bboxes.append(anno["bboxes"][i][j])
flatterned_tokens_positive.append(
anno["tokens_positive"][i]) # Assume this box corresponds to all the token_spans for this entity
flatterned_bboxes_scores.append(anno["scores"][i][j])
anno["bboxes"] = flatterned_bboxes
anno["tokens_positive"] = flatterned_tokens_positive
anno["scores"] = flatterned_bboxes_scores
return anno
def get_raw_image(self, idx):
image, *_ = super(CaptionTSV, self).__getitem__(idx)
return image
def get_img_id(self, idx):
line_no = self.get_line_no(idx)
if self.label_tsv is not None:
row = self.label_tsv.seek(line_no)
img_id = row[0]
return img_id
|