File size: 2,866 Bytes
128757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Code is copy-pasted exactly as in torch.utils.data.distributed.
# FIXME remove this once c10d fixes the bug it has
import math
import torch
import torch.distributed as dist
from torch.utils.data.sampler import Sampler

from maskrcnn_benchmark.utils.comm import shared_random_seed


class DistributedSampler(Sampler):
    """Sampler that restricts data loading to a subset of the dataset.

    It is especially useful in conjunction with

    :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each

    process can pass a DistributedSampler instance as a DataLoader sampler,

    and load a subset of the original dataset that is exclusive to it.

    .. note::

        Dataset is assumed to be of constant size.

    Arguments:

        dataset: Dataset used for sampling.

        num_replicas (optional): Number of processes participating in

            distributed training.

        rank (optional): Rank of the current process within num_replicas.

    """

    def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, use_random=False):
        if num_replicas is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = dist.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
        self.total_size = self.num_samples * self.num_replicas
        self.shuffle = shuffle
        self.use_random = use_random

    def __iter__(self):
        if self.shuffle:
            # deterministically shuffle based on epoch
            _seed = self.epoch
            if self.use_random:
                _seed = int(shared_random_seed())
            g = torch.Generator()
            g.manual_seed(_seed)
            indices = torch.randperm(len(self.dataset), generator=g).tolist()
        else:
            indices = torch.arange(len(self.dataset)).tolist()

        # add extra samples to make it evenly divisible
        indices += indices[: (self.total_size - len(indices))]
        assert len(indices) == self.total_size

        # subsample
        offset = self.num_samples * self.rank
        indices = indices[offset : offset + self.num_samples]
        assert len(indices) == self.num_samples

        return iter(indices)

    def __len__(self):
        return self.num_samples

    def set_epoch(self, epoch):
        self.epoch = epoch