File size: 3,953 Bytes
128757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
from maskrcnn_benchmark.structures.image_list import to_image_list

import pdb
class BatchCollator(object):
    """

    From a list of samples from the dataset,

    returns the batched images and targets.

    This should be passed to the DataLoader

    """

    def __init__(self, size_divisible=0):
        self.size_divisible = size_divisible

    def __call__(self, batch):
        transposed_batch = list(zip(*batch))
        
        images = to_image_list(transposed_batch[0], self.size_divisible)
        targets = transposed_batch[1]
        img_ids = transposed_batch[2]
        positive_map = None
        positive_map_eval = None
        greenlight_map = None

        if isinstance(targets[0], dict):
            return images, targets, img_ids, positive_map, positive_map_eval

        if "greenlight_map" in transposed_batch[1][0].fields():
            greenlight_map = torch.stack([i.get_field("greenlight_map") for i in transposed_batch[1]], dim = 0)

        if "positive_map" in transposed_batch[1][0].fields():
            # we batch the positive maps here
            # Since in general each batch element will have a different number of boxes,
            # we collapse a single batch dimension to avoid padding. This is sufficient for our purposes.
            max_len = max([v.get_field("positive_map").shape[1] for v in transposed_batch[1]])
            nb_boxes = sum([v.get_field("positive_map").shape[0] for v in transposed_batch[1]])
            batched_pos_map = torch.zeros((nb_boxes, max_len), dtype=torch.bool)
            cur_count = 0
            for v in transposed_batch[1]:
                cur_pos = v.get_field("positive_map")
                batched_pos_map[cur_count: cur_count + len(cur_pos), : cur_pos.shape[1]] = cur_pos
                cur_count += len(cur_pos)

            assert cur_count == len(batched_pos_map)
            positive_map = batched_pos_map.float()
        

        if "positive_map_eval" in transposed_batch[1][0].fields():
            # we batch the positive maps here
            # Since in general each batch element will have a different number of boxes,
            # we collapse a single batch dimension to avoid padding. This is sufficient for our purposes.
            max_len = max([v.get_field("positive_map_eval").shape[1] for v in transposed_batch[1]])
            nb_boxes = sum([v.get_field("positive_map_eval").shape[0] for v in transposed_batch[1]])
            batched_pos_map = torch.zeros((nb_boxes, max_len), dtype=torch.bool)
            cur_count = 0
            for v in transposed_batch[1]:
                cur_pos = v.get_field("positive_map_eval")
                batched_pos_map[cur_count: cur_count + len(cur_pos), : cur_pos.shape[1]] = cur_pos
                cur_count += len(cur_pos)

            assert cur_count == len(batched_pos_map)
            # assert batched_pos_map.sum().item() == sum([v["positive_map"].sum().item() for v in batch[1]])
            positive_map_eval = batched_pos_map.float()


        return images, targets, img_ids, positive_map, positive_map_eval, greenlight_map


class BBoxAugCollator(object):
    """

    From a list of samples from the dataset,

    returns the images and targets.

    Images should be converted to batched images in `im_detect_bbox_aug`

    """

    def __call__(self, batch):
        # return list(zip(*batch))
        transposed_batch = list(zip(*batch))

        images = transposed_batch[0]
        targets = transposed_batch[1]
        img_ids = transposed_batch[2]
        positive_map = None
        positive_map_eval = None

        if isinstance(targets[0], dict):
            return images, targets, img_ids, positive_map, positive_map_eval

        return images, targets, img_ids, positive_map, positive_map_eval