Spaces:
Runtime error
Runtime error
File size: 23,119 Bytes
128757a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import bisect
import copy
import logging
import os
import torch.utils.data
import torch.distributed as dist
from maskrcnn_benchmark.utils.comm import get_world_size
from maskrcnn_benchmark.utils.imports import import_file
from . import datasets as D
from . import samplers
from .collate_batch import BatchCollator, BBoxAugCollator
from .transforms import build_transforms
from transformers import AutoTokenizer
from .datasets.duplicate_dataset import create_duplicate_dataset
def build_dataset(cfg, dataset_list, transforms, dataset_catalog, is_train=True, class_concat=False, extra_args={}):
"""
Arguments:
dataset_list (list[str]): Contains the names of the datasets, i.e.,
coco_2014_trian, coco_2014_val, etc
transforms (callable): transforms to apply to each (image, target) sample
dataset_catalog (DatasetCatalog): contains the information on how to
construct a dataset.
is_train (bool): whether to setup the dataset for training or testing
"""
if not isinstance(dataset_list, (list, tuple)):
raise RuntimeError(
"dataset_list should be a list of strings, got {}".format(dataset_list)
)
datasets = []
num_category = 1
for dataset_id, dataset_name in enumerate(dataset_list, 1):
if is_train:
dataset_name = dataset_name + cfg.DATASETS.TRAIN_DATASETNAME_SUFFIX
else:
dataset_name = dataset_name + cfg.DATASETS.TEST_DATASETNAME_SUFFIX
data = dataset_catalog.get(dataset_name)
factory = getattr(D, data["factory"])
args = data["args"]
# for COCODataset, we want to remove images without annotations
# during training
if data["factory"] == "COCODataset":
args["remove_images_without_annotations"] = is_train
if data["factory"] == "PascalVOCDataset":
args["use_difficult"] = not is_train
if data["factory"] in ["VGTSVDataset", "CocoDetectionTSV", "ODTSVDataset"]:
args["extra_fields"] = ["class"]
if cfg.MODEL.MASK_ON:
args["extra_fields"].append("mask")
if data["factory"] in ["CocoGrounding", "CocoDetectionTSV", "CaptionTSV", "MixedDataset", "FlickrDataset", "RefExpDataset", "GQADataset", "PseudoData", "PhrasecutDetection"]:
# args["return_masks"] = False
args["return_masks"] = cfg.MODEL.MASK_ON
args["return_tokens"] = True
args["max_num_labels"] = cfg.TEST.MDETR_STYLE_AGGREGATE_CLASS_NUM
args["max_query_len"] = cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN
args["transforms"] = transforms
args.update(extra_args)
if dataset_name == "flickr30k_train":
copy = cfg.DATASETS.FLICKR_COPY
elif dataset_name in ["mixed_train", "mixed_train_no_coco"]:
copy = cfg.DATASETS.MIXED_COPY
elif dataset_name == "COCO_odinw_train_8copy_dt_train":
copy = cfg.DATASETS.COCO_COPY
elif dataset_name == "LVIS_odinw_train_8copy_dt_train":
copy = cfg.DATASETS.LVIS_COPY
elif dataset_name == "object365_odinw_2copy_dt_train":
copy = cfg.DATASETS.OBJECT365_COPY
elif dataset_name == "vg_odinw_clipped_8copy_dt_train":
copy = cfg.DATASETS.VG_COPY
elif dataset_name == "vg_vgoi6_clipped_8copy_dt_train":
copy = cfg.DATASETS.VG_COPY
elif dataset_name == "imagenetod_train_odinw_2copy_dt":
copy = cfg.DATASETS.IN_COPY
elif dataset_name == "oi_train_odinw_dt":
copy = cfg.DATASETS.OI_COPY
elif is_train:
copy = cfg.DATASETS.GENERAL_COPY
elif not is_train:
copy = cfg.DATASETS.GENERAL_COPY_TEST
else:
copy = -1 # do not ever copy test
if copy != -1:
new_factory = create_duplicate_dataset(factory)
dataset = new_factory(copy=copy, **args)
else:
# make dataset from factory
dataset = factory(**args)
print(dataset_name, 'has the {} data points'.format(len(dataset)), data["factory"])
if class_concat:
category = list(dataset.contiguous_category_id_to_json_id.values())
dataset.contiguous_category_id_to_json_id = {}
dataset.json_category_id_to_contiguous_id = {}
for id, cat in enumerate(category, start=num_category):
dataset.json_category_id_to_contiguous_id[cat] = id
dataset.contiguous_category_id_to_json_id[id] = cat
num_category += len(category)
print("Found {} #category after group {}, concating ...".format(num_category, dataset_id))
datasets.append(dataset)
# for testing, return a list of datasets
if not is_train:
return datasets
# for training, concatenate all datasets into a single one
dataset = datasets[0]
if len(datasets) > 1:
dataset = D.ConcatDataset(datasets)
return [dataset]
def build_dataset_by_group(dataset_list, transforms, dataset_catalog, is_train=True, class_by_group=True,
class_concat=False, extra_args={}):
"""
Arguments:
dataset_list (list[str]): Contains the names of the datasets, i.e.,
coco_2014_trian, coco_2014_val, etc
transforms (callable): transforms to apply to each (image, target) sample
dataset_catalog (DatasetCatalog): contains the information on how to
construct a dataset.
is_train (bool): whether to setup the dataset for training or testing
"""
if not isinstance(dataset_list, (list, tuple)):
raise RuntimeError(
"dataset_list should be a list of strings, got {}".format(dataset_list)
)
num_category = 1
grouped_datasets = []
for group_id, group in enumerate(dataset_list, 1):
datasets = []
for dataset_name in group:
data = dataset_catalog.get(dataset_name)
factory = getattr(D, data["factory"])
args = data["args"]
# for COCODataset, we want to remove images without annotations
# during training
if data["factory"] == "COCODataset":
args["remove_images_without_annotations"] = is_train
if data["factory"] == "PascalVOCDataset":
args["use_difficult"] = not is_train
args["transforms"] = transforms
args.update(extra_args)
# make dataset from factory
dataset = factory(**args)
# check if dataset is grouped by task, assume one class per task
if class_by_group and data["factory"] != "Background":
category = dataset.contiguous_category_id_to_json_id[1]
del dataset.contiguous_category_id_to_json_id[1]
dataset.json_category_id_to_contiguous_id[category] = group_id
dataset.contiguous_category_id_to_json_id[group_id] = category
datasets.append(dataset)
if class_concat:
for dataset in datasets:
category = list(dataset.contiguous_category_id_to_json_id.values())
dataset.contiguous_category_id_to_json_id = {}
dataset.json_category_id_to_contiguous_id = {}
for id, cat in enumerate(category, start=num_category):
dataset.json_category_id_to_contiguous_id[cat] = id
dataset.contiguous_category_id_to_json_id[id] = cat
num_category += len(category)
print("Found {} #category after group {}, concating ...".format(num_category, group_id))
if is_train:
datasets = D.ConcatDataset(datasets)
grouped_datasets.append(datasets)
# for testing, return a list of datasets
if not is_train:
datasets = [dataset for group in grouped_datasets for dataset in group]
return datasets
if class_concat:
grouped_datasets = D.ConcatDataset(grouped_datasets)
return [grouped_datasets]
# for training, concatenate all datasets into a single one
return grouped_datasets
def make_data_sampler(dataset, shuffle, distributed, num_replicas=None, rank=None, use_random_seed=True):
if distributed:
return samplers.DistributedSampler(dataset, shuffle=shuffle, num_replicas=num_replicas, rank=rank,
use_random=use_random_seed)
if shuffle:
sampler = torch.utils.data.sampler.RandomSampler(dataset)
else:
sampler = torch.utils.data.sampler.SequentialSampler(dataset)
return sampler
def _quantize(x, bins):
bins = copy.copy(bins)
bins = sorted(bins)
quantized = list(map(lambda y: bisect.bisect_right(bins, y), x))
return quantized
def _compute_aspect_ratios(dataset):
aspect_ratios = []
for i in range(len(dataset)):
img_info = dataset.get_img_info(i)
aspect_ratio = float(img_info["height"]) / float(img_info["width"])
aspect_ratios.append(aspect_ratio)
return aspect_ratios
def make_batch_data_sampler(
dataset, sampler, aspect_grouping, images_per_batch, num_iters=None, start_iter=0, drop_last=False
):
if aspect_grouping:
if not isinstance(aspect_grouping, (list, tuple)):
aspect_grouping = [aspect_grouping]
aspect_ratios = _compute_aspect_ratios(dataset)
group_ids = _quantize(aspect_ratios, aspect_grouping)
batch_sampler = samplers.GroupedBatchSampler(
sampler, group_ids, images_per_batch, drop_uneven=drop_last
)
else:
batch_sampler = torch.utils.data.sampler.BatchSampler(
sampler, images_per_batch, drop_last=drop_last
)
if num_iters is not None:
batch_sampler = samplers.IterationBasedBatchSampler(
batch_sampler, num_iters, start_iter
)
return batch_sampler
def make_data_loader(cfg, is_train=True, is_distributed=False, num_replicas=None, rank=None, start_iter=0):
num_gpus = num_replicas or get_world_size()
if is_train:
images_per_batch = cfg.SOLVER.IMS_PER_BATCH
assert (
images_per_batch % num_gpus == 0
), "SOLVER.IMS_PER_BATCH ({}) must be divisible by the number "
"of GPUs ({}) used.".format(images_per_batch, num_gpus)
images_per_gpu = images_per_batch // num_gpus
shuffle = True
num_iters = cfg.SOLVER.MAX_ITER
else:
images_per_batch = cfg.TEST.IMS_PER_BATCH
assert (
images_per_batch % num_gpus == 0
), "TEST.IMS_PER_BATCH ({}) must be divisible by the number "
"of GPUs ({}) used.".format(images_per_batch, num_gpus)
images_per_gpu = images_per_batch // num_gpus
shuffle = False if not is_distributed else True
num_iters = None
start_iter = 0
if images_per_gpu > 1:
logger = logging.getLogger(__name__)
logger.warning(
"When using more than one image per GPU you may encounter "
"an out-of-memory (OOM) error if your GPU does not have "
"sufficient memory. If this happens, you can reduce "
"SOLVER.IMS_PER_BATCH (for training) or "
"TEST.IMS_PER_BATCH (for inference). For training, you must "
"also adjust the learning rate and schedule length according "
"to the linear scaling rule. See for example: "
"https://github.com/facebookresearch/Detectron/blob/master/configs/getting_started/tutorial_1gpu_e2e_faster_rcnn_R-50-FPN.yaml#L14"
)
# group images which have similar aspect ratio. In this case, we only
# group in two cases: those with width / height > 1, and the other way around,
# but the code supports more general grouping strategy
aspect_grouping = [1] if cfg.DATALOADER.ASPECT_RATIO_GROUPING else []
paths_catalog = import_file(
"maskrcnn_benchmark.config.paths_catalog", cfg.PATHS_CATALOG, True
)
DatasetCatalog = paths_catalog.DatasetCatalog
if len(cfg.DATASETS.REGISTER) > 0:
for new_dataset in cfg.DATASETS.REGISTER:
# img_dir = cfg.DATASETS.REGISTER[new_dataset]["img_dir"]
# if "ann_file" in cfg.DATASETS.REGISTER[new_dataset]:
# ann_file = cfg.DATASETS.REGISTER[new_dataset]["ann_file"]
# else:
# ann_file = None
attrs = dict(cfg.DATASETS.REGISTER[new_dataset])
if is_train:
new_dataset = new_dataset + cfg.DATASETS.TRAIN_DATASETNAME_SUFFIX
else:
new_dataset = new_dataset + cfg.DATASETS.TEST_DATASETNAME_SUFFIX
DatasetCatalog.set(new_dataset, attrs)
dataset_list = cfg.DATASETS.TRAIN if is_train else cfg.DATASETS.TEST
# Haotian: expand bing dataset
if "bing_caption_train" in dataset_list and len(cfg.DATASETS.BING_INDEX_LIST) > 0:
dataset_list = list(dataset_list)
dataset_list.remove("bing_caption_train")
for bing_index in cfg.DATASETS.BING_INDEX_LIST:
dataset_list.insert(len(dataset_list), "bing_caption_{}_train".format(bing_index))
dataset_list = tuple(dataset_list)
if "bing_caption_train_no_coco" in dataset_list and len(cfg.DATASETS.BING_INDEX_LIST) > 0:
dataset_list = list(dataset_list)
dataset_list.remove("bing_caption_train_no_coco")
for bing_index in cfg.DATASETS.BING_INDEX_LIST:
dataset_list.insert(len(dataset_list), "bing_caption_{}_train_no_coco".format(bing_index))
dataset_list = tuple(dataset_list)
print("The combined datasets are: {}.".format(dataset_list))
transforms = None if not is_train and cfg.TEST.USE_MULTISCALE else build_transforms(cfg, is_train)
extra_args = {}
if is_train and cfg.DATASETS.USE_CROWD:
extra_args['ignore_crowd'] = False
if is_train and cfg.DATASETS.MAX_BOX > 0:
extra_args['max_box'] = cfg.DATASETS.MAX_BOX
if is_train and cfg.DATASETS.FEW_SHOT>0:
extra_args['few_shot'] = cfg.DATASETS.FEW_SHOT
if is_train and cfg.DATASETS.SHUFFLE_SEED != 0:
extra_args['shuffle_seed'] = cfg.DATASETS.SHUFFLE_SEED
# od to grounding
if is_train and cfg.DATASETS.RANDOM_SAMPLE_NEG > 0:
extra_args['random_sample_negative'] = cfg.DATASETS.RANDOM_SAMPLE_NEG
if is_train and cfg.DATASETS.ADD_DET_PROMPT:
extra_args["add_detection_prompt"] = True
if is_train and cfg.DATASETS.USE_OD_AUG:
extra_args["use_od_data_aug"] = True
if is_train and cfg.DATASETS.DISABLE_SHUFFLE:
extra_args["disable_shuffle"] = True
if cfg.DATASETS.ONE_HOT:
extra_args["one_hot"] = True
if is_train and len(cfg.DATASETS.PROMPT_VERSION) > 0:
extra_args["prompt_engineer_version"] = cfg.DATASETS.PROMPT_VERSION
if is_train and len(cfg.DATASETS.CONTROL_PROB) == 4:
extra_args["control_probabilities"] = cfg.DATASETS.CONTROL_PROB
if is_train and cfg.DATASETS.DISABLE_CLIP_TO_IMAGE:
extra_args["disable_clip_to_image"] = cfg.DATASETS.DISABLE_CLIP_TO_IMAGE
if is_train and cfg.DATASETS.NO_MINUS_ONE_FOR_ONE_HOT:
extra_args["no_minus_one_for_one_hot"] = cfg.DATASETS.NO_MINUS_ONE_FOR_ONE_HOT
if is_train:
extra_args["separation_tokens"] = cfg.DATASETS.SEPARATION_TOKENS
# caption
if is_train and cfg.DATASETS.CAPTION_MIN_BOX > 0:
extra_args["caption_min_box"] = cfg.DATASETS.CAPTION_MIN_BOX
if is_train and cfg.DATASETS.REPLACE_CLEAN_LABEL:
extra_args["replace_clean_label"] = True
if is_train and cfg.DATASETS.FURTHER_SCREEN:
extra_args["further_screen"] = True
if is_train and cfg.DATASETS.CAPTION_CONF > 0.0:
extra_args["caption_conf"] = cfg.DATASETS.CAPTION_CONF
if is_train:
extra_args["caption_nms"] = cfg.DATASETS.CAPTION_NMS
if is_train and cfg.DATASETS.PACK_RANDOM_CAPTION_NUMBER > 0:
extra_args["pack_random_caption_number"] = cfg.DATASETS.PACK_RANDOM_CAPTION_NUMBER
if is_train and cfg.DATASETS.INFERENCE_CAPTION:
extra_args["inference_caption"] = True
if is_train and cfg.DATASETS.SAMPLE_NEGATIVE_FOR_GROUNDING_DATA > 0:
extra_args["sample_negative_for_grounding_data"] = cfg.DATASETS.SAMPLE_NEGATIVE_FOR_GROUNDING_DATA
if is_train and cfg.DATASETS.RANDOM_PACK_PROB > 0:
extra_args["random_pack_prob"] = cfg.DATASETS.RANDOM_PACK_PROB
if is_train and cfg.DATASETS.NO_RANDOM_PACK_PROBABILITY > 0:
extra_args["no_random_pack_probability"] = cfg.DATASETS.NO_RANDOM_PACK_PROBABILITY
if is_train:
extra_args["safeguard_positive_caption"] = cfg.DATASETS.SAFEGUARD_POSITIVE_CAPTION
if is_train:
extra_args["local_debug"] = cfg.DATASETS.LOCAL_DEBUG
if is_train:
extra_args["no_mask_for_od"] = cfg.MODEL.DYHEAD.FUSE_CONFIG.NO_MASK_FOR_OD
if is_train:
extra_args["no_mask_for_gold"] = cfg.MODEL.DYHEAD.FUSE_CONFIG.NO_MASK_FOR_GOLD
if is_train:
extra_args["mlm_obj_for_only_positive"] = cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_OBJ_FOR_ONLY_POSITIVE
if cfg.DATASETS.OVERRIDE_CATEGORY and cfg.DATASETS.USE_OVERRIDE_CATEGORY:
extra_args["override_category"] = cfg.DATASETS.OVERRIDE_CATEGORY
if is_train:
extra_args["caption_format_version"] = cfg.DATASETS.CAPTION_FORMAT_VERSION
if is_train:
extra_args["special_safeguard_for_coco_grounding"] = cfg.DATASETS.SPECIAL_SAFEGUARD_FOR_COCO_GROUNDING
if is_train:
extra_args["diver_box_for_vqa"] = cfg.DATASETS.DIVER_BOX_FOR_VQA
extra_args["caption_prompt"] = cfg.DATASETS.CAPTION_PROMPT
extra_args["use_caption_prompt"] = cfg.DATASETS.USE_CAPTION_PROMPT
# extra_args['tokenizer'] = AutoTokenizer.from_pretrained(cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE)
if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
# extra_args['tokenizer'] = build_tokenizer("clip")
from transformers import CLIPTokenizerFast
if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS:
extra_args["tokenizer"] = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32", from_slow=True, mask_token='ðŁĴij</w>')
else:
extra_args["tokenizer"] = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32", from_slow=True)
else:
extra_args['tokenizer'] = AutoTokenizer.from_pretrained(cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE)
if isinstance(dataset_list[0], (tuple, list)):
datasets = build_dataset_by_group(dataset_list, transforms, DatasetCatalog, is_train,
class_by_group=cfg.DATASETS.ALTERNATIVE_TRAINING,
class_concat=cfg.DATASETS.CLASS_CONCAT,
extra_args=extra_args)
else:
datasets = build_dataset(cfg, dataset_list, transforms, DatasetCatalog, is_train,
class_concat=cfg.DATASETS.CLASS_CONCAT,
extra_args=extra_args)
data_loaders = []
for di, dataset in enumerate(datasets):
if is_train and cfg.SOLVER.MAX_EPOCH > 0:
num_iters = cfg.SOLVER.MAX_EPOCH * len(dataset) // cfg.SOLVER.IMS_PER_BATCH
print("Number of iterations are {}".format(num_iters))
cfg.defrost()
cfg.SOLVER.MAX_ITER = num_iters
cfg.SOLVER.DATASET_LENGTH = len(dataset)
cfg.freeze()
if is_train and cfg.SOLVER.MULTI_MAX_EPOCH:
num_iters = None
cfg.defrost()
cfg.SOLVER.MULTI_MAX_ITER += (cfg.SOLVER.MULTI_MAX_EPOCH[di] * len(dataset) // cfg.SOLVER.IMS_PER_BATCH,)
cfg.freeze()
if is_train and cfg.DATALOADER.DISTRIBUTE_CHUNK_AMONG_NODE:
from .datasets.custom_distributed_sampler import DistributedSamplerChunkByNode
chunk_or_not = []
for i in dataset_list:
if "bing_caption" in i:
chunk_or_not.append(True)
else:
chunk_or_not.append(False)
assert(len(chunk_or_not) == len(dataset.datasets))
'''
If we are training on 4 nodes, each with 8 GPUs
'''
num_nodes = int(os.getenv('NODE_COUNT', os.getenv('OMPI_COMM_WORLD_SIZE', 1)))
local_size = cfg.num_gpus//num_nodes
node_rank = int(os.getenv('NODE_RANK', os.getenv('OMPI_COMM_WORLD_RANK', 0)))
local_rank = cfg.local_rank
sampler = DistributedSamplerChunkByNode(
dataset = dataset,
all_datasets = dataset.datasets, # Assumming dataset is a ConcateDataset instance,
chunk_or_not = chunk_or_not,
num_replicas = cfg.num_gpus, # total GPU number, e.g., 32
rank = dist.get_rank(), # Global Rank, e.g., 0~31
node_rank = node_rank, # Node Rank, e.g., 0~3
node_number = num_nodes, # how many node e.g., 4
process_num_per_node = local_size, # e.g., 8
rank_within_local_node = local_rank, # e.g., 0~7
)
else:
sampler = make_data_sampler(dataset, shuffle, is_distributed, num_replicas=num_replicas, rank=rank,
use_random_seed=cfg.DATALOADER.USE_RANDOM_SEED)
batch_sampler = make_batch_data_sampler(
dataset, sampler, aspect_grouping, images_per_gpu, num_iters, start_iter, drop_last=is_train
)
collator = BBoxAugCollator() if not is_train and cfg.TEST.USE_MULTISCALE else BatchCollator(
cfg.DATALOADER.SIZE_DIVISIBILITY)
num_workers = cfg.DATALOADER.NUM_WORKERS
data_loader = torch.utils.data.DataLoader(
dataset,
num_workers=num_workers,
batch_sampler=batch_sampler,
collate_fn=collator,
)
data_loaders.append(data_loader)
if is_train and cfg.SOLVER.MULTI_MAX_EPOCH:
cfg.defrost()
cfg.SOLVER.MULTI_MAX_ITER += (
cfg.SOLVER.MULTI_MAX_EPOCH[-1] * min([len(dataset) // cfg.SOLVER.IMS_PER_BATCH for dataset in datasets]),)
cfg.freeze()
if is_train and not cfg.DATASETS.ALTERNATIVE_TRAINING and not cfg.DATASETS.MULTISTAGE_TRAINING:
# during training, a single (possibly concatenated) data_loader is returned
assert len(data_loaders) == 1
return data_loaders[0]
return data_loaders
|