Spaces:
Runtime error
Runtime error
File size: 2,784 Bytes
128757a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
class BalancedPositiveNegativeSampler(object):
"""
This class samples batches, ensuring that they contain a fixed proportion of positives
"""
def __init__(self, batch_size_per_image, positive_fraction):
"""
Arguments:
batch_size_per_image (int): number of elements to be selected per image
positive_fraction (float): percentace of positive elements per batch
"""
self.batch_size_per_image = batch_size_per_image
self.positive_fraction = positive_fraction
def __call__(self, matched_idxs):
"""
Arguments:
matched idxs: list of tensors containing -1, 0 or positive values.
Each tensor corresponds to a specific image.
-1 values are ignored, 0 are considered as negatives and > 0 as
positives.
Returns:
pos_idx (list[tensor])
neg_idx (list[tensor])
Returns two lists of binary masks for each image.
The first list contains the positive elements that were selected,
and the second list the negative example.
"""
pos_idx = []
neg_idx = []
for matched_idxs_per_image in matched_idxs:
positive = torch.nonzero(matched_idxs_per_image >= 1).squeeze(1)
negative = torch.nonzero(matched_idxs_per_image == 0).squeeze(1)
num_pos = int(self.batch_size_per_image * self.positive_fraction)
# protect against not enough positive examples
num_pos = min(positive.numel(), num_pos)
num_neg = self.batch_size_per_image - num_pos
# protect against not enough negative examples
num_neg = min(negative.numel(), num_neg)
# randomly select positive and negative examples
perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]
pos_idx_per_image = positive[perm1]
neg_idx_per_image = negative[perm2]
# create binary mask from indices
pos_idx_per_image_mask = torch.zeros_like(
matched_idxs_per_image, dtype=torch.bool
)
neg_idx_per_image_mask = torch.zeros_like(
matched_idxs_per_image, dtype=torch.bool
)
pos_idx_per_image_mask[pos_idx_per_image] = 1
neg_idx_per_image_mask[neg_idx_per_image] = 1
pos_idx.append(pos_idx_per_image_mask)
neg_idx.append(neg_idx_per_image_mask)
return pos_idx, neg_idx
|