File size: 2,931 Bytes
128757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
from torch import nn


class IOULoss(nn.Module):
    def __init__(self, loss_type="iou"):
        super(IOULoss, self).__init__()
        self.loss_type = loss_type

    def forward(self, pred, target, weight=None):
        pred_left = pred[:, 0]
        pred_top = pred[:, 1]
        pred_right = pred[:, 2]
        pred_bottom = pred[:, 3]

        target_left = target[:, 0]
        target_top = target[:, 1]
        target_right = target[:, 2]
        target_bottom = target[:, 3]

        target_area = (target_left + target_right) * \
                      (target_top + target_bottom)
        pred_area = (pred_left + pred_right) * \
                    (pred_top + pred_bottom)

        w_intersect = torch.min(pred_left, target_left) + torch.min(pred_right, target_right)
        g_w_intersect = torch.max(pred_left, target_left) + torch.max(
            pred_right, target_right)
        h_intersect = torch.min(pred_bottom, target_bottom) + torch.min(pred_top, target_top)
        g_h_intersect = torch.max(pred_bottom, target_bottom) + torch.max(pred_top, target_top)
        ac_uion = g_w_intersect * g_h_intersect + 1e-7
        area_intersect = w_intersect * h_intersect
        area_union = target_area + pred_area - area_intersect
        ious = (area_intersect + 1.0) / (area_union + 1.0)
        gious = ious - (ac_uion - area_union) / ac_uion
        if self.loss_type == 'iou':
            losses = -torch.log(ious)
        elif self.loss_type == 'linear_iou':
            losses = 1 - ious
        elif self.loss_type == 'giou':
            losses = 1 - gious
        else:
            raise NotImplementedError

        if weight is not None and weight.sum() > 0:
            return (losses * weight).sum()
        else:
            assert losses.numel() != 0
            return losses.sum()


class IOUWHLoss(nn.Module):  # used for anchor guiding
    def __init__(self, reduction='none'):
        super(IOUWHLoss, self).__init__()
        self.reduction = reduction

    def forward(self, pred, target):
        orig_shape = pred.shape
        pred = pred.view(-1, 4)
        target = target.view(-1, 4)
        target[:, :2] = 0
        tl = torch.max((target[:, :2] - pred[:, 2:] / 2),
                       (target[:, :2] - target[:, 2:] / 2))

        br = torch.min((target[:, :2] + pred[:, 2:] / 2),
                       (target[:, :2] + target[:, 2:] / 2))

        area_p = torch.prod(pred[:, 2:], 1)
        area_g = torch.prod(target[:, 2:], 1)

        en = (tl < br).type(tl.type()).prod(dim=1)
        area_i = torch.prod(br - tl, 1) * en
        U = area_p + area_g - area_i + 1e-16
        iou = area_i / U

        loss = 1 - iou ** 2
        if self.reduction == 'mean':
            loss = loss.mean()
        elif self.reduction == 'sum':
            loss = loss.sum()

        return loss