File size: 11,011 Bytes
128757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import collections
import json
import os.path as op

import numpy as np
import torch

from .tsv import TSVYamlDataset, find_file_path_in_yaml
from .box_label_loader import BoxLabelLoader
from maskrcnn_benchmark.data.datasets.coco_dt import CocoDetectionTSV


class VGDetectionTSV(CocoDetectionTSV):
    pass


def sort_key_by_val(dic):
    sorted_dic = sorted(dic.items(), key=lambda kv: kv[1])
    return [kv[0] for kv in sorted_dic]


def bbox_overlaps(anchors, gt_boxes):
    """

    anchors: (N, 4) ndarray of float

    gt_boxes: (K, 4) ndarray of float

    overlaps: (N, K) ndarray of overlap between boxes and query_boxes

    """
    N = anchors.size(0)
    K = gt_boxes.size(0)

    gt_boxes_area = ((gt_boxes[:, 2] - gt_boxes[:, 0] + 1) *
                     (gt_boxes[:, 3] - gt_boxes[:, 1] + 1)).view(1, K)

    anchors_area = ((anchors[:, 2] - anchors[:, 0] + 1) *
                    (anchors[:, 3] - anchors[:, 1] + 1)).view(N, 1)

    boxes = anchors.view(N, 1, 4).expand(N, K, 4)
    query_boxes = gt_boxes.view(1, K, 4).expand(N, K, 4)

    iw = (torch.min(boxes[:, :, 2], query_boxes[:, :, 2]) -
          torch.max(boxes[:, :, 0], query_boxes[:, :, 0]) + 1)
    iw[iw < 0] = 0

    ih = (torch.min(boxes[:, :, 3], query_boxes[:, :, 3]) -
          torch.max(boxes[:, :, 1], query_boxes[:, :, 1]) + 1)
    ih[ih < 0] = 0

    ua = anchors_area + gt_boxes_area - (iw * ih)
    overlaps = iw * ih / ua

    return overlaps


# VG data loader for Danfei Xu's Scene graph focused format.
# todo: if ordering of classes, attributes, relations changed
# todo make sure to re-write the obj_classes.txt/rel_classes.txt files

def _box_filter(boxes, must_overlap=False):
    """ Only include boxes that overlap as possible relations.

    If no overlapping boxes, use all of them."""
    overlaps = bbox_overlaps(boxes, boxes).numpy() > 0
    np.fill_diagonal(overlaps, 0)

    all_possib = np.ones_like(overlaps, dtype=np.bool)
    np.fill_diagonal(all_possib, 0)

    if must_overlap:
        possible_boxes = np.column_stack(np.where(overlaps))

        if possible_boxes.size == 0:
            possible_boxes = np.column_stack(np.where(all_possib))
    else:
        possible_boxes = np.column_stack(np.where(all_possib))
    return possible_boxes


class VGTSVDataset(TSVYamlDataset):
    """

    Generic TSV dataset format for Object Detection.

    """

    def __init__(self, yaml_file, extra_fields=None, transforms=None,

                 is_load_label=True, filter_duplicate_rels=True,

                 relation_on=False, cv2_output=False, **kwargs):
        if extra_fields is None:
            extra_fields = []
        self.transforms = transforms
        self.is_load_label = is_load_label
        self.relation_on = relation_on
        super(VGTSVDataset, self).__init__(yaml_file, cv2_output=cv2_output)

        ignore_attrs = self.cfg.get("ignore_attrs", None)
        # construct those maps
        jsondict_file = find_file_path_in_yaml(self.cfg.get("jsondict", None), self.root)
        jsondict = json.load(open(jsondict_file, 'r'))

        # self.linelist_file
        if 'train' in op.basename(self.linelist_file):
            self.split = "train"
        elif 'test' in op.basename(self.linelist_file) \
                or 'val' in op.basename(self.linelist_file) \
                or 'valid' in op.basename(self.linelist_file):
            self.split = "test"
        else:
            raise ValueError("Split must be one of [train, test], but get {}!".format(self.linelist_file))
        self.filter_duplicate_rels = filter_duplicate_rels and self.split == 'train'

        self.class_to_ind = jsondict['label_to_idx']
        self.ind_to_class = jsondict['idx_to_label']
        self.class_to_ind['__background__'] = 0
        self.ind_to_class['0'] = '__background__'
        self.classes = sort_key_by_val(self.class_to_ind)
        assert (all([self.classes[i] == self.ind_to_class[str(i)] for i in range(len(self.classes))]))

        # writing obj classes to disk for Neural Motif model building.
        obj_classes_out_fn = op.splitext(self.label_file)[0] + ".obj_classes.txt"
        if not op.isfile(obj_classes_out_fn):
            with open(obj_classes_out_fn, 'w') as f:
                for item in self.classes:
                    f.write("%s\n" % item)

        self.attribute_to_ind = jsondict['attribute_to_idx']
        self.ind_to_attribute = jsondict['idx_to_attribute']
        self.attribute_to_ind['__no_attribute__'] = 0
        self.ind_to_attribute['0'] = '__no_attribute__'
        self.attributes = sort_key_by_val(self.attribute_to_ind)
        assert (all([self.attributes[i] == self.ind_to_attribute[str(i)] for i in range(len(self.attributes))]))

        self.relation_to_ind = jsondict['predicate_to_idx']
        self.ind_to_relation = jsondict['idx_to_predicate']
        self.relation_to_ind['__no_relation__'] = 0
        self.ind_to_relation['0'] = '__no_relation__'
        self.relations = sort_key_by_val(self.relation_to_ind)
        assert (all([self.relations[i] == self.ind_to_relation[str(i)] for i in range(len(self.relations))]))

        # writing rel classes to disk for Neural Motif Model building.
        rel_classes_out_fn = op.splitext(self.label_file)[0] + '.rel_classes.txt'
        if not op.isfile(rel_classes_out_fn):
            with open(rel_classes_out_fn, 'w') as f:
                for item in self.relations:
                    f.write("%s\n" % item)

        # label map: minus one because we will add one in BoxLabelLoader
        self.labelmap = {key: val - 1 for key, val in self.class_to_ind.items()}
        labelmap_file = find_file_path_in_yaml(self.cfg.get("labelmap_dec"), self.root)
        # self.labelmap_dec = load_labelmap_file(labelmap_file)
        if self.is_load_label:
            self.label_loader = BoxLabelLoader(
                labelmap=self.labelmap,
                extra_fields=extra_fields,
                ignore_attrs=ignore_attrs
            )

        # get frequency prior for relations
        if self.relation_on:
            self.freq_prior_file = op.splitext(self.label_file)[0] + ".freq_prior.npy"
            if self.split == 'train' and not op.exists(self.freq_prior_file):
                print("Computing frequency prior matrix...")
                fg_matrix, bg_matrix = self._get_freq_prior()
                prob_matrix = fg_matrix.astype(np.float32)
                prob_matrix[:, :, 0] = bg_matrix
                prob_matrix[:, :, 0] += 1
                prob_matrix /= np.sum(prob_matrix, 2)[:, :, None]
                np.save(self.freq_prior_file, prob_matrix)

    def _get_freq_prior(self, must_overlap=False):
        fg_matrix = np.zeros((
            len(self.classes),
            len(self.classes),
            len(self.relations)
        ), dtype=np.int64)

        bg_matrix = np.zeros((
            len(self.classes),
            len(self.classes),
        ), dtype=np.int64)

        for ex_ind in range(self.__len__()):
            target = self.get_groundtruth(ex_ind)
            gt_classes = target.get_field('labels').numpy()
            gt_relations = target.get_field('relation_labels').numpy()
            gt_boxes = target.bbox

            # For the foreground, we'll just look at everything
            try:
                o1o2 = gt_classes[gt_relations[:, :2]]
                for (o1, o2), gtr in zip(o1o2, gt_relations[:, 2]):
                    fg_matrix[o1, o2, gtr] += 1

                # For the background, get all of the things that overlap.
                o1o2_total = gt_classes[np.array(
                    _box_filter(gt_boxes, must_overlap=must_overlap), dtype=int)]
                for (o1, o2) in o1o2_total:
                    bg_matrix[o1, o2] += 1
            except IndexError as e:
                assert len(gt_relations) == 0

            if ex_ind % 20 == 0:
                print("processing {}/{}".format(ex_ind, self.__len__()))

        return fg_matrix, bg_matrix

    def relation_loader(self, relation_triplets, target):
        # relation_triplets [list of tuples]: M*3
        # target: BoxList from label_loader
        if self.filter_duplicate_rels:
            # Filter out dupes!
            assert self.split == 'train'
            all_rel_sets = collections.defaultdict(list)
            for (o0, o1, r) in relation_triplets:
                all_rel_sets[(o0, o1)].append(r)
            relation_triplets = [(k[0], k[1], np.random.choice(v)) for k, v in all_rel_sets.items()]

        # get M*M pred_labels
        relations = torch.zeros([len(target), len(target)], dtype=torch.int64)
        for i in range(len(relation_triplets)):
            subj_id = relation_triplets[i][0]
            obj_id = relation_triplets[i][1]
            pred = relation_triplets[i][2]
            relations[subj_id, obj_id] = int(pred)

        relation_triplets = torch.tensor(relation_triplets)
        target.add_field("relation_labels", relation_triplets)
        target.add_field("pred_labels", relations)
        return target

    def get_target_from_annotations(self, annotations, img_size, idx):
        if self.is_load_label and annotations:
            target = self.label_loader(annotations['objects'], img_size)
            # make sure no boxes are removed
            assert (len(annotations['objects']) == len(target))
            if self.split in ["val", "test"]:
                # add the difficult field
                target.add_field("difficult", torch.zeros(len(target), dtype=torch.int32))
            # load relations
            if self.relation_on:
                target = self.relation_loader(annotations["relations"], target)
            return target

    def get_groundtruth(self, idx, call=False):
        # similar to __getitem__ but without transform
        img = self.get_image(idx)
        if self.cv2_output:
            img_size = img.shape[:2][::-1]  # h, w -> w, h
        else:
            img_size = img.size  # w, h
        annotations = self.get_annotations(idx)
        target = self.get_target_from_annotations(annotations, img_size, idx)
        if call:
            return img, target, annotations
        else:
            return target

    def apply_transforms(self, img, target=None):
        if self.transforms is not None:
            img, target = self.transforms(img, target)
        return img, target

    def map_class_id_to_class_name(self, class_id):
        return self.classes[class_id]

    def map_attribute_id_to_attribute_name(self, attribute_id):
        return self.attributes[attribute_id]

    def map_relation_id_to_relation_name(self, relation_id):
        return self.relations[relation_id]