File size: 6,640 Bytes
540f246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import logging
import queue
import threading
import time
import gradio as gr
from deal_agent_framework import DealAgentFramework
from agents.deals import Opportunity, Deal
from log_utils import reformat
import plotly.graph_objects as go


class QueueHandler(logging.Handler):
    def __init__(self, log_queue):
        super().__init__()
        self.log_queue = log_queue

    def emit(self, record):
        self.log_queue.put(self.format(record))

def html_for(log_data):
    output = '<br>'.join(log_data[-18:])
    return f"""

    <div id="scrollContent" style="height: 400px; overflow-y: auto; border: 1px solid #ccc; background-color: #222229; padding: 10px;">

    {output}

    </div>

    """

def setup_logging(log_queue):
    handler = QueueHandler(log_queue)
    formatter = logging.Formatter(
        "[%(asctime)s] %(message)s",
        datefmt="%Y-%m-%d %H:%M:%S %z",
    )
    handler.setFormatter(formatter)
    logger = logging.getLogger()
    logger.addHandler(handler)
    logger.setLevel(logging.INFO)
                

class App:

    def __init__(self):    
        self.agent_framework = None

    def get_agent_framework(self):
        if not self.agent_framework:
            self.agent_framework = DealAgentFramework()
            self.agent_framework.init_agents_as_needed()
        return self.agent_framework

    def run(self):
        with gr.Blocks(title="The Price is Right", fill_width=True) as ui:
            
            log_data = gr.State([])
            
            def table_for(opps):
                return [[opp.deal.product_description, f"${opp.deal.price:.2f}", f"${opp.estimate:.2f}", f"${opp.discount:.2f}", opp.deal.url] for opp in opps]

            def update_output(log_data, log_queue, result_queue):
                initial_result = table_for(self.get_agent_framework().memory)
                final_result = None
                while True:
                    try:
                        message = log_queue.get_nowait()
                        log_data.append(reformat(message))
                        yield log_data, html_for(log_data), final_result or initial_result
                    except queue.Empty:
                        try:
                            final_result = result_queue.get_nowait()
                            yield log_data, html_for(log_data), final_result or initial_result
                        except queue.Empty:
                            if final_result is not None:
                                break
                            time.sleep(0.1)

            def get_initial_plot():
                fig = go.Figure()
                fig.update_layout(
                    title='Loading vector DB...',
                    height=400,
                )
                return fig

            def get_plot():
                documents, vectors, colors = DealAgentFramework.get_plot_data(max_datapoints=1000)
                # Create the 3D scatter plot
                fig = go.Figure(data=[go.Scatter3d(
                    x=vectors[:, 0],
                    y=vectors[:, 1],
                    z=vectors[:, 2],
                    mode='markers',
                    marker=dict(size=2, color=colors, opacity=0.7),
                )])
                
                fig.update_layout(
                    scene=dict(xaxis_title='x', 
                               yaxis_title='y', 
                               zaxis_title='z',
                               aspectmode='manual',
                               aspectratio=dict(x=2.2, y=2.2, z=1),  # Make x-axis twice as long
                               camera=dict(
                                   eye=dict(x=1.6, y=1.6, z=0.8)  # Adjust camera position
                               )),
                    height=400,
                    margin=dict(r=5, b=1, l=5, t=2)
                )

                return fig
        
            def do_run():
                new_opportunities = self.get_agent_framework().run()
                table = table_for(new_opportunities)
                return table

            def run_with_logging(initial_log_data):
                log_queue = queue.Queue()
                result_queue = queue.Queue()
                setup_logging(log_queue)
                
                def worker():
                    result = do_run()
                    result_queue.put(result)
                
                thread = threading.Thread(target=worker)
                thread.start()
                
                for log_data, output, final_result in update_output(initial_log_data, log_queue, result_queue):
                    yield log_data, output, final_result

            def do_select(selected_index: gr.SelectData):
                opportunities = self.get_agent_framework().memory
                row = selected_index.index[0]
                opportunity = opportunities[row]
                self.get_agent_framework().planner.messenger.alert(opportunity)
        
            with gr.Row():
                gr.Markdown('<div style="text-align: center;font-size:24px"><strong>The Price is Right</strong> - Autonomous Agent Framework that hunts for deals</div>')
            with gr.Row():
                gr.Markdown('<div style="text-align: center;font-size:14px">A proprietary fine-tuned LLM deployed on Modal and a RAG pipeline with a frontier model collaborate to send push notifications with great online deals.</div>')
            with gr.Row():
                opportunities_dataframe = gr.Dataframe(
                    headers=["Deals found so far", "Price", "Estimate", "Discount", "URL"],
                    wrap=True,
                    column_widths=[6, 1, 1, 1, 3],
                    row_count=10,
                    col_count=5,
                    max_height=400,
                )
            with gr.Row():
                with gr.Column(scale=1):
                    logs = gr.HTML()
                with gr.Column(scale=1):
                    plot = gr.Plot(value=get_plot(), show_label=False)
        
            ui.load(run_with_logging, inputs=[log_data], outputs=[log_data, logs, opportunities_dataframe])

            timer = gr.Timer(value=300, active=True)
            timer.tick(run_with_logging, inputs=[log_data], outputs=[log_data, logs, opportunities_dataframe])

            opportunities_dataframe.select(do_select)
        
        ui.launch(share=False, inbrowser=True)

if __name__=="__main__":
    App().run()