File size: 5,748 Bytes
2c924d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os

import PIL.Image
import numpy as np
import torchvision
from torchvision.transforms import Resize, InterpolationMode
import imageio
from einops import rearrange
import cv2
from PIL import Image
from annotator.util import resize_image, HWC3
from annotator.openpose import OpenposeDetector
import decord
import jax
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
    download_from_original_stable_diffusion_ckpt,
)
from huggingface_hub import hf_hub_download

import flax.linen as nn

apply_openpose = OpenposeDetector()


def add_watermark(image, watermark_path, wm_rel_size=1 / 16, boundary=5):
    """
    Creates a watermark on the saved inference image.
    We request that you do not remove this to properly assign credit to
    Shi-Lab's work.
    """
    watermark = Image.open(watermark_path)
    w_0, h_0 = watermark.size
    H, W, _ = image.shape
    wmsize = int(max(H, W) * wm_rel_size)
    aspect = h_0 / w_0
    if aspect > 1.0:
        watermark = watermark.resize((wmsize, int(aspect * wmsize)), Image.LANCZOS)
    else:
        watermark = watermark.resize((int(wmsize / aspect), wmsize), Image.LANCZOS)
    w, h = watermark.size
    loc_h = H - h - boundary
    loc_w = W - w - boundary
    image = Image.fromarray(image)
    mask = watermark if watermark.mode in ("RGBA", "LA") else None
    image.paste(watermark, (loc_w, loc_h), mask)
    return image


def load_safetensors_model(model_link):
    ckpt_path = hf_hub_download(
        repo_id=model_link, filename="ligne_claire_anime_diffusion_v1.safetensors"
    )

    print(f"Checkpoint path: {ckpt_path}")

    # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
    pipe = download_from_original_stable_diffusion_ckpt(
        checkpoint_path=ckpt_path,
        original_config_file="v1-inference.yaml",
        from_safetensors=True,
    )
    pipe.save_pretrained("./models/ligne_claire", safe_serialization=True)

    return pipe


def pre_process_pose(input_video, apply_pose_detect: bool = True):
    detected_maps = []
    for frame in input_video:
        img = rearrange(frame, "c h w -> h w c").astype(np.uint8)
        img = HWC3(img)
        if apply_pose_detect:
            detected_map, _ = apply_openpose(img)
        else:
            detected_map = img
        detected_map = HWC3(detected_map)
        H, W, C = img.shape
        detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
        detected_maps.append(detected_map[None])
    detected_maps = np.concatenate(detected_maps)
    control = (detected_maps.copy()) / 255.0
    return rearrange(control, "f h w c -> f c h w")


def create_video(frames, fps, rescale=False, path=None, watermark=None):
    if path is None:
        dir = "temporal"
        os.makedirs(dir, exist_ok=True)
        path = os.path.join(dir, "movie.mp4")

    outputs = []
    for i, x in enumerate(frames):
        x = torchvision.utils.make_grid(torch.Tensor(x), nrow=4)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)

        if watermark is not None:
            x = add_watermark(x, watermark)
        outputs.append(x)
        # imageio.imsave(os.path.join(dir, os.path.splitext(name)[0] + f'_{i}.jpg'), x)

    imageio.mimsave(path, outputs, fps=fps)
    return path


def create_gif(frames, fps, rescale=False, path=None, watermark=None):
    if path is None:
        dir = "temporal"
        os.makedirs(dir, exist_ok=True)
        path = os.path.join(dir, "canny_db.gif")

    outputs = []
    for i, x in enumerate(frames):
        x = torchvision.utils.make_grid(torch.Tensor(x), nrow=4)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        if watermark is not None:
            x = add_watermark(x, watermark)
        outputs.append(x)
        # imageio.imsave(os.path.join(dir, os.path.splitext(name)[0] + f'_{i}.jpg'), x)

    imageio.mimsave(path, outputs, fps=fps)
    return path


def prepare_video(
    video_path: str,
    resolution: int,
    device,
    dtype,
    normalize=True,
    start_t: float = 0,
    end_t: float = -1,
    output_fps: int = -1,
):
    vr = decord.VideoReader(video_path)
    initial_fps = vr.get_avg_fps()
    if output_fps == -1:
        output_fps = int(initial_fps)
    if end_t == -1:
        end_t = len(vr) / initial_fps
    else:
        end_t = min(len(vr) / initial_fps, end_t)
    assert 0 <= start_t < end_t
    assert output_fps > 0
    start_f_ind = int(start_t * initial_fps)
    end_f_ind = int(end_t * initial_fps)
    num_f = int((end_t - start_t) * output_fps)
    sample_idx = np.linspace(start_f_ind, end_f_ind, num_f, endpoint=False).astype(int)
    video = vr.get_batch(sample_idx)
    video = video.asnumpy()
    _, h, w, _ = video.shape
    video = rearrange(video, "f h w c -> f c h w")
    video = torch.Tensor(video)  # .to(device).to(dtype)

    # Use max if you want the larger side to be equal to resolution (e.g. 512)
    # k = float(resolution) / min(h, w)
    k = float(resolution) / max(h, w)
    h *= k
    w *= k
    h = int(np.round(h / 64.0)) * 64
    w = int(np.round(w / 64.0)) * 64

    video = Resize((h, w), interpolation=InterpolationMode.BILINEAR, antialias=True)(
        video
    )
    if normalize:
        video = video / 127.5 - 1.0
    # video = rearrange(video, "f c h w -> f h w c").numpy() #channel first to channel last
    video = video.numpy()
    return video, output_fps


def post_process_gif(list_of_results, image_resolution):
    output_file = "/tmp/ddxk.gif"
    imageio.mimsave(output_file, list_of_results, fps=4)
    return output_file