Spaces:
Build error
Build error
File size: 53,849 Bytes
2c924d3 527b597 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 527b597 71e9a42 2c924d3 527b597 2c924d3 71e9a42 2c924d3 527b597 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 527b597 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 527b597 2c924d3 527b597 2c924d3 527b597 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 527b597 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 527b597 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 527b597 2c924d3 71e9a42 2c924d3 71e9a42 527b597 71e9a42 527b597 71e9a42 2c924d3 527b597 2c924d3 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 527b597 2c924d3 527b597 2c924d3 71e9a42 2c924d3 71e9a42 527b597 2c924d3 527b597 71e9a42 2c924d3 71e9a42 2c924d3 527b597 2c924d3 527b597 2c924d3 527b597 71e9a42 527b597 2c924d3 71e9a42 2c924d3 71e9a42 527b597 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 2c924d3 71e9a42 527b597 71e9a42 527b597 71e9a42 527b597 71e9a42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 |
import warnings
from functools import partial
from typing import Dict, List, Optional, Union
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict
from flax.jax_utils import unreplicate
from flax import jax_utils
from flax.training.common_utils import shard
from PIL import Image
from transformers import CLIPFeatureExtractor, CLIPTokenizer, FlaxCLIPTextModel
from einops import rearrange, repeat
from diffusers.models import FlaxAutoencoderKL, FlaxControlNetModel, FlaxUNet2DConditionModel
from diffusers.schedulers import (
FlaxDDIMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
)
from diffusers.utils import PIL_INTERPOLATION, logging, replace_example_docstring
from diffusers.pipelines.pipeline_flax_utils import FlaxDiffusionPipeline
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker_flax import FlaxStableDiffusionSafetyChecker
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
"""
Text2Video-Zero:
- Inputs: Prompt, Pose Control via mp4/gif, First Frame (?)
- JAX implementation
- 3DUnet to replace 2DUnetConditional
"""
def replicate_devices(array):
return jnp.expand_dims(array, 0).repeat(jax.device_count(), 0)
DEBUG = False # Set to True to use python for loop instead of jax.fori_loop for easier debugging
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import jax
>>> import numpy as np
>>> import jax.numpy as jnp
>>> from flax.jax_utils import replicate
>>> from flax.training.common_utils import shard
>>> from diffusers.utils import load_image
>>> from PIL import Image
>>> from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel
>>> def image_grid(imgs, rows, cols):
... w, h = imgs[0].size
... grid = Image.new("RGB", size=(cols * w, rows * h))
... for i, img in enumerate(imgs):
... grid.paste(img, box=(i % cols * w, i // cols * h))
... return grid
>>> def create_key(seed=0):
... return jax.random.PRNGKey(seed)
>>> rng = create_key(0)
>>> # get canny image
>>> canny_image = load_image(
... "https://huggingface.co/datasets/YiYiXu/test-doc-assets/resolve/main/blog_post_cell_10_output_0.jpeg"
... )
>>> prompts = "best quality, extremely detailed"
>>> negative_prompts = "monochrome, lowres, bad anatomy, worst quality, low quality"
>>> # load control net and stable diffusion v1-5
>>> controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
... "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.float32
... )
>>> pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32
... )
>>> params["controlnet"] = controlnet_params
>>> num_samples = jax.device_count()
>>> rng = jax.random.split(rng, jax.device_count())
>>> prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
>>> negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples)
>>> processed_image = pipe.prepare_image_inputs([canny_image] * num_samples)
>>> p_params = replicate(params)
>>> prompt_ids = shard(prompt_ids)
>>> negative_prompt_ids = shard(negative_prompt_ids)
>>> processed_image = shard(processed_image)
>>> output = pipe(
... prompt_ids=prompt_ids,
... image=processed_image,
... params=p_params,
... prng_seed=rng,
... num_inference_steps=50,
... neg_prompt_ids=negative_prompt_ids,
... jit=True,
... ).images
>>> output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
>>> output_images = image_grid(output_images, num_samples // 4, 4)
>>> output_images.save("generated_image.png")
```
"""
class FlaxTextToVideoPipeline(FlaxDiffusionPipeline):
def __init__(
self,
vae,
text_encoder,
tokenizer,
unet,
unet_vanilla,
controlnet,
scheduler: Union[
FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler
],
safety_checker: FlaxStableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
dtype: jnp.dtype = jnp.float32,
):
super().__init__()
self.dtype = dtype
if safety_checker is None:
logger.warn(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
unet_vanilla=unet_vanilla,
controlnet=controlnet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
def DDPM_forward(self, params, prng, x0, t0, tMax, shape, text_embeddings):
if x0 is None:
return jax.random.normal(prng, shape, dtype=text_embeddings.dtype)
else:
eps = jax.random.normal(prng, x0.shape, dtype=text_embeddings.dtype)
alpha_vec = jnp.prod(params["scheduler"].common.alphas[t0:tMax])
xt = jnp.sqrt(alpha_vec) * x0 + \
jnp.sqrt(1-alpha_vec) * eps
return xt
def DDIM_backward(self, params, num_inference_steps, timesteps, skip_t, t0, t1, do_classifier_free_guidance, text_embeddings, latents_local,
guidance_scale, controlnet_image=None, controlnet_conditioning_scale=None):
scheduler_state = self.scheduler.set_timesteps(params["scheduler"], num_inference_steps)
f = latents_local.shape[2]
latents_local = rearrange(latents_local, "b c f h w -> (b f) c h w")
latents = latents_local.copy()
x_t0_1 = None
x_t1_1 = None
max_timestep = len(timesteps)-1
timesteps = jnp.array(timesteps)
def while_body(args):
step, latents, x_t0_1, x_t1_1, scheduler_state = args
t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step]
latent_model_input = jnp.concatenate(
[latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(
scheduler_state, latent_model_input, timestep=t
)
f = latents.shape[0]
te = jnp.stack([text_embeddings[0, :, :]]*f + [text_embeddings[-1,:,:]]*f)
timestep = jnp.broadcast_to(t, latent_model_input.shape[0])
if controlnet_image is not None:
down_block_res_samples, mid_block_res_sample = self.controlnet.apply(
{"params": params["controlnet"]},
jnp.array(latent_model_input),
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=te,
controlnet_cond=controlnet_image,
conditioning_scale=controlnet_conditioning_scale,
return_dict=False,
)
# predict the noise residual
noise_pred = self.unet.apply(
{"params": params["unet"]},
jnp.array(latent_model_input),
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=te,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
).sample
else:
noise_pred = self.unet.apply(
{"params": params["unet"]},
jnp.array(latent_model_input),
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=te,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = jnp.split(noise_pred, 2, axis=0)
noise_pred = noise_pred_uncond + guidance_scale * \
(noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents, scheduler_state = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple()
x_t0_1 = jax.lax.select((step < max_timestep-1) & (timesteps[step+1] == t0), latents, x_t0_1)
x_t1_1 = jax.lax.select((step < max_timestep-1) & (timesteps[step+1] == t1), latents, x_t1_1)
return (step + 1, latents, x_t0_1, x_t1_1, scheduler_state)
latents_shape = latents.shape
x_t0_1, x_t1_1 = jnp.zeros(latents_shape), jnp.zeros(latents_shape)
def cond_fun(arg):
step, latents, x_t0_1, x_t1_1, scheduler_state = arg
return (step < skip_t) & (step < num_inference_steps)
if DEBUG:
step = 0
while cond_fun((step, latents, x_t0_1, x_t1_1)):
step, latents, x_t0_1, x_t1_1, scheduler_state = while_body((step, latents, x_t0_1, x_t1_1, scheduler_state))
step = step + 1
else:
_, latents, x_t0_1, x_t1_1, scheduler_state = jax.lax.while_loop(cond_fun, while_body, (0, latents, x_t0_1, x_t1_1, scheduler_state))
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=f)
res = {"x0": latents.copy()}
if x_t0_1 is not None:
x_t0_1 = rearrange(x_t0_1, "(b f) c h w -> b c f h w", f=f)
res["x_t0_1"] = x_t0_1.copy()
if x_t1_1 is not None:
x_t1_1 = rearrange(x_t1_1, "(b f) c h w -> b c f h w", f=f)
res["x_t1_1"] = x_t1_1.copy()
return res
def warp_latents_independently(self, latents, reference_flow):
_, _, H, W = reference_flow.shape
b, _, f, h, w = latents.shape
assert b == 1
coords0 = coords_grid(f, H, W)
coords_t0 = coords0 + reference_flow
coords_t0 = coords_t0.at[:, 0].set(coords_t0[:, 0] * w / W)
coords_t0 = coords_t0.at[:, 1].set(coords_t0[:, 1] * h / H)
f, c, _, _ = coords_t0.shape
coords_t0 = jax.image.resize(coords_t0, (f, c, h, w), "linear")
coords_t0 = rearrange(coords_t0, 'f c h w -> f h w c')
latents_0 = rearrange(latents[0], 'c f h w -> f c h w')
warped = grid_sample(latents_0, coords_t0, "mirror")
warped = rearrange(warped, '(b f) c h w -> b c f h w', f=f)
return warped
def warp_vid_independently(self, vid, reference_flow):
_, _, H, W = reference_flow.shape
f, _, h, w = vid.shape
coords0 = coords_grid(f, H, W)
coords_t0 = coords0 + reference_flow
coords_t0 = coords_t0.at[:, 0].set(coords_t0[:, 0] * w / W)
coords_t0 = coords_t0.at[:, 1].set(coords_t0[:, 1] * h / H)
f, c, _, _ = coords_t0.shape
coords_t0 = jax.image.resize(coords_t0, (f, c, h, w), "linear")
coords_t0 = rearrange(coords_t0, 'f c h w -> f h w c')
# latents_0 = rearrange(vid, 'c f h w -> f c h w')
warped = grid_sample(vid, coords_t0, "zeropad")
# warped = rearrange(warped, 'f c h w -> b c f h w', f=f)
return warped
def create_motion_field(self, motion_field_strength_x, motion_field_strength_y, frame_ids, video_length, latents):
reference_flow = jnp.zeros(
(video_length-1, 2, 512, 512), dtype=latents.dtype)
for fr_idx, frame_id in enumerate(frame_ids):
reference_flow = reference_flow.at[fr_idx, 0, :,
:].set(motion_field_strength_x*(frame_id))
reference_flow = reference_flow.at[fr_idx, 1, :,
:].set(motion_field_strength_y*(frame_id))
return reference_flow
def create_motion_field_and_warp_latents(self, motion_field_strength_x, motion_field_strength_y, frame_ids, video_length, latents):
motion_field = self.create_motion_field(motion_field_strength_x=motion_field_strength_x,
motion_field_strength_y=motion_field_strength_y, latents=latents, video_length=video_length, frame_ids=frame_ids)
for idx, latent in enumerate(latents):
latents = latents.at[idx].set(self.warp_latents_independently(
latent[None], motion_field)[0])
return motion_field, latents
def text_to_video_zero(self, params,
prng,
text_embeddings,
video_length: Optional[int],
do_classifier_free_guidance = True,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
num_videos_per_prompt: Optional[int] = 1,
xT = None,
smooth_bg_strength: float=0.,
motion_field_strength_x: float = 12,
motion_field_strength_y: float = 12,
t0: int = 44,
t1: int = 47,
controlnet_image=None,
controlnet_conditioning_scale=0,
):
frame_ids = list(range(video_length))
# Prepare timesteps
params["scheduler"] = self.scheduler.set_timesteps(params["scheduler"], num_inference_steps)
timesteps = params["scheduler"].timesteps
# Prepare latent variables
num_channels_latents = self.unet.in_channels
batch_size = 1
xT = prepare_latents(params, prng, batch_size * num_videos_per_prompt, num_channels_latents, height, width, self.vae_scale_factor, xT)
timesteps_ddpm = [981, 961, 941, 921, 901, 881, 861, 841, 821, 801, 781, 761, 741, 721,
701, 681, 661, 641, 621, 601, 581, 561, 541, 521, 501, 481, 461, 441,
421, 401, 381, 361, 341, 321, 301, 281, 261, 241, 221, 201, 181, 161,
141, 121, 101, 81, 61, 41, 21, 1]
timesteps_ddpm.reverse()
t0 = timesteps_ddpm[t0]
t1 = timesteps_ddpm[t1]
x_t1_1 = None
# Denoising loop
shape = (batch_size, num_channels_latents, 1, height //
self.vae.scaling_factor, width // self.vae.scaling_factor)
# perform ∆t backward steps by stable diffusion
ddim_res = self.DDIM_backward(params, num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=1000, t0=t0, t1=t1, do_classifier_free_guidance=do_classifier_free_guidance,
text_embeddings=text_embeddings, latents_local=xT, guidance_scale=guidance_scale,
controlnet_image=jnp.stack([controlnet_image[0]] * 2), controlnet_conditioning_scale=controlnet_conditioning_scale)
x0 = ddim_res["x0"]
# apply warping functions
if "x_t0_1" in ddim_res:
x_t0_1 = ddim_res["x_t0_1"]
if "x_t1_1" in ddim_res:
x_t1_1 = ddim_res["x_t1_1"]
x_t0_k = x_t0_1[:, :, :1, :, :].repeat(video_length-1, 2)
reference_flow, x_t0_k = self.create_motion_field_and_warp_latents(
motion_field_strength_x=motion_field_strength_x, motion_field_strength_y=motion_field_strength_y, latents=x_t0_k, video_length=video_length, frame_ids=frame_ids[1:])
# assuming t0=t1=1000, if t0 = 1000
# DDPM forward for more motion freedom
ddpm_fwd = partial(self.DDPM_forward, params=params, prng=prng, x0=x_t0_k, t0=t0,
tMax=t1, shape=shape, text_embeddings=text_embeddings)
x_t1_k = jax.lax.cond(t1 > t0,
ddpm_fwd,
lambda:x_t0_k
)
x_t1 = jnp.concatenate([x_t1_1, x_t1_k], axis=2)
# backward stepts by stable diffusion
#warp the controlnet image following the same flow defined for latent
controlnet_video = controlnet_image[:video_length]
controlnet_video = controlnet_video.at[1:].set(self.warp_vid_independently(controlnet_video[1:], reference_flow))
controlnet_image = jnp.concatenate([controlnet_video]*2)
smooth_bg = True
if smooth_bg:
#latent shape: "b c f h w"
M_FG = repeat(get_mask_pose(controlnet_video), "f h w -> b c f h w", c=x_t1.shape[1], b=batch_size)
initial_bg = repeat(x_t1[:,:,0] * (1 - M_FG[:,:,0]), "b c h w -> b c f h w", f=video_length-1)
#warp the controlnet image following the same flow defined for latent #f c h w
initial_bg_warped = self.warp_latents_independently(initial_bg, reference_flow)
bgs = x_t1[:,:,1:] * (1 - M_FG[:,:,1:]) #initial background
initial_mask_warped = 1 - self.warp_latents_independently(repeat(M_FG[:,:,0], "b c h w -> b c f h w", f = video_length-1), reference_flow)
# initial_mask_warped = 1 - warp_vid_independently(repeat(M_FG[:,:,0], "b c h w -> (b f) c h w", f = video_length-1), reference_flow)
# initial_mask_warped = rearrange(initial_mask_warped, "(b f) c h w -> b c f h w", b=batch_size)
mask = (1 - M_FG[:,:,1:]) * initial_mask_warped
x_t1 = x_t1.at[:,:,1:].set( (1 - mask) * x_t1[:,:,1:] + mask * (initial_bg_warped * smooth_bg_strength + (1 - smooth_bg_strength) * bgs))
ddim_res = self.DDIM_backward(params, num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=t1, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
text_embeddings=text_embeddings, latents_local=x_t1, guidance_scale=guidance_scale,
controlnet_image=controlnet_image, controlnet_conditioning_scale=controlnet_conditioning_scale,
)
x0 = ddim_res["x0"]
del ddim_res
del x_t1
del x_t1_1
del x_t1_k
return x0
def denoise_latent(self, params, num_inference_steps, timesteps, do_classifier_free_guidance, text_embeddings, latents,
guidance_scale, controlnet_image=None, controlnet_conditioning_scale=None):
scheduler_state = self.scheduler.set_timesteps(params["scheduler"], num_inference_steps)
# f = latents_local.shape[2]
# latents_local = rearrange(latents_local, "b c f h w -> (b f) c h w")
max_timestep = len(timesteps)-1
timesteps = jnp.array(timesteps)
def while_body(args):
step, latents, scheduler_state = args
t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step]
latent_model_input = jnp.concatenate(
[latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(
scheduler_state, latent_model_input, timestep=t
)
f = latents.shape[0]
te = jnp.stack([text_embeddings[0, :, :]]*f + [text_embeddings[-1,:,:]]*f)
timestep = jnp.broadcast_to(t, latent_model_input.shape[0])
if controlnet_image is not None:
down_block_res_samples, mid_block_res_sample = self.controlnet.apply(
{"params": params["controlnet"]},
jnp.array(latent_model_input),
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=te,
controlnet_cond=controlnet_image,
conditioning_scale=controlnet_conditioning_scale,
return_dict=False,
)
# predict the noise residual
noise_pred = self.unet_vanilla.apply(
{"params": params["unet"]},
jnp.array(latent_model_input),
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=te,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
).sample
else:
noise_pred = self.unet_vanilla.apply(
{"params": params["unet"]},
jnp.array(latent_model_input),
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=te,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = jnp.split(noise_pred, 2, axis=0)
noise_pred = noise_pred_uncond + guidance_scale * \
(noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents, scheduler_state = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple()
return (step + 1, latents, scheduler_state)
def cond_fun(arg):
step, latents, scheduler_state = arg
return (step < num_inference_steps)
if DEBUG:
step = 0
while cond_fun((step, latents, scheduler_state)):
step, latents, scheduler_state = while_body((step, latents, scheduler_state))
step = step + 1
else:
_, latents, scheduler_state = jax.lax.while_loop(cond_fun, while_body, (0, latents, scheduler_state))
# latents = rearrange(latents, "(b f) c h w -> b c f h w", f=f)
return latents
def generate_starting_frames(self,
params,
prngs: list, #list of prngs for each img
prompt,
neg_prompt,
controlnet_image,
do_classifier_free_guidance = True,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
t0: int = 44,
t1: int = 47,
controlnet_conditioning_scale=1.,
):
height, width = controlnet_image.shape[-2:]
if height % 64 != 0 or width % 64 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 64 but are {height} and {width}.")
shape = (self.unet.in_channels, height //
self.vae_scale_factor, width // self.vae_scale_factor) # c h w
# scale the initial noise by the standard deviation required by the scheduler
# print(f"Generating {len(prngs)} first frames with prompt {prompt}, for {num_inference_steps} steps. PRNG seeds are: {prngs}")
latents = jnp.stack([jax.random.normal(prng, shape) for prng in prngs]) # b c h w
latents = latents * params["scheduler"].init_noise_sigma
timesteps = params["scheduler"].timesteps
timesteps_ddpm = [981, 961, 941, 921, 901, 881, 861, 841, 821, 801, 781, 761, 741, 721,
701, 681, 661, 641, 621, 601, 581, 561, 541, 521, 501, 481, 461, 441,
421, 401, 381, 361, 341, 321, 301, 281, 261, 241, 221, 201, 181, 161,
141, 121, 101, 81, 61, 41, 21, 1]
timesteps_ddpm.reverse()
t0 = timesteps_ddpm[t0]
t1 = timesteps_ddpm[t1]
# get prompt text embeddings
prompt_ids = shard(self.prepare_text_inputs(prompt))
# prompt_embeds = jax.pmap( lambda prompt_ids, params: )(prompt_ids, params)
@jax.pmap
def prepare_text(params, prompt_ids, uncond_input):
prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0]
negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0]
text_embeddings = jnp.concatenate([negative_prompt_embeds, prompt_embeds])
return text_embeddings
# TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0`
# implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0`
batch_size = 1
max_length = prompt_ids.shape[-1]
if neg_prompt is None:
uncond_input = shard(self.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np"
).input_ids)
else:
neg_prompt_ids = self.prepare_text_inputs(neg_prompt)
uncond_input = shard(neg_prompt_ids)
text_embeddings = prepare_text(params, prompt_ids, uncond_input)
controlnet_image = shard(jnp.stack([controlnet_image[0]] * len(prngs) * 2))
timesteps = shard(jnp.array(timesteps))
guidance_scale = shard(jnp.array(guidance_scale))
controlnet_conditioning_scale = shard(jnp.array(controlnet_conditioning_scale))
#latent is shape # b c h w
# vmap_gen_start_frame = jax.vmap(lambda latent: p_generate_starting_frames(self, num_inference_steps, params, timesteps, text_embeddings, shard(latent[None]), guidance_scale, controlnet_image, controlnet_conditioning_scale))
# decoded_latents = vmap_gen_start_frame(latents)
decoded_latents = p_generate_starting_frames(self, num_inference_steps, params, timesteps, text_embeddings, shard(latents), guidance_scale, controlnet_image, controlnet_conditioning_scale)
# print(f"shape output: {decoded_latents.shape}")
return unshard(decoded_latents)#[:, 0]
def generate_video(
self,
prompt: str,
image: jnp.array,
params: Union[Dict, FrozenDict],
prng_seed: jax.random.KeyArray,
num_inference_steps: int = 50,
guidance_scale: Union[float, jnp.array] = 7.5,
latents: jnp.array = None,
neg_prompt: str = "",
controlnet_conditioning_scale: Union[float, jnp.array] = 1.0,
return_dict: bool = True,
jit: bool = False,
xT = None,
smooth_bg_strength: float=0.,
motion_field_strength_x: float = 3,
motion_field_strength_y: float = 4,
t0: int = 44,
t1: int = 47,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt_ids (`jnp.array`):
The prompt or prompts to guide the image generation.
image (`jnp.array`):
Array representing the ControlNet input condition. ControlNet use this input condition to generate
guidance to Unet.
params (`Dict` or `FrozenDict`): Dictionary containing the model parameters/weights
prng_seed (`jax.random.KeyArray` or `jax.Array`): Array containing random number generator key
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
latents (`jnp.array`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
controlnet_conditioning_scale (`float` or `jnp.array`, *optional*, defaults to 1.0):
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original unet.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] instead of
a plain tuple.
jit (`bool`, defaults to `False`):
Whether to run `pmap` versions of the generation and safety scoring functions. NOTE: This argument
exists because `__call__` is not yet end-to-end pmap-able. It will be removed in a future release.
Examples:
Returns:
[`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a
`tuple. When returning a tuple, the first element is a list with the generated images, and the second
element is a list of `bool`s denoting whether the corresponding generated image likely represents
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
"""
height, width = image.shape[-2:]
vid_length = image.shape[0]
# get prompt text embeddings
prompt_ids = self.prepare_text_inputs([prompt] * vid_length)
neg_prompt_ids = self.prepare_text_inputs([neg_prompt] * vid_length)
# TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0`
# implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0`
batch_size = 1
if isinstance(guidance_scale, float):
# Convert to a tensor so each device gets a copy. Follow the prompt_ids for
# shape information, as they may be sharded (when `jit` is `True`), or not.
guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0])
if len(prompt_ids.shape) > 2:
# Assume sharded
guidance_scale = guidance_scale[:, None]
if isinstance(controlnet_conditioning_scale, float):
# Convert to a tensor so each device gets a copy. Follow the prompt_ids for
# shape information, as they may be sharded (when `jit` is `True`), or not.
controlnet_conditioning_scale = jnp.array([controlnet_conditioning_scale] * prompt_ids.shape[0])
if len(prompt_ids.shape) > 2:
# Assume sharded
controlnet_conditioning_scale = controlnet_conditioning_scale[:, None]
if jit:
images = _p_generate(
self,
replicate_devices(prompt_ids),
replicate_devices(image),
jax_utils.replicate(params),
replicate_devices(prng_seed),
num_inference_steps,
replicate_devices(guidance_scale),
replicate_devices(latents) if latents is not None else None,
replicate_devices(neg_prompt_ids) if neg_prompt_ids is not None else None,
replicate_devices(controlnet_conditioning_scale),
replicate_devices(xT) if xT is not None else None,
replicate_devices(smooth_bg_strength),
replicate_devices(motion_field_strength_x),
replicate_devices(motion_field_strength_y),
t0,
t1,
)
else:
images = self._generate(
prompt_ids,
image,
params,
prng_seed,
num_inference_steps,
guidance_scale,
latents,
neg_prompt_ids,
controlnet_conditioning_scale,
xT,
smooth_bg_strength,
motion_field_strength_x,
motion_field_strength_y,
t0,
t1,
)
if self.safety_checker is not None:
safety_params = params["safety_checker"]
images_uint8_casted = (images * 255).round().astype("uint8")
num_devices, batch_size = images.shape[:2]
images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3)
images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit)
images = np.asarray(images)
# block images
if any(has_nsfw_concept):
for i, is_nsfw in enumerate(has_nsfw_concept):
if is_nsfw:
images[i] = np.asarray(images_uint8_casted[i])
images = images.reshape(num_devices, batch_size, height, width, 3)
else:
images = np.asarray(images)
has_nsfw_concept = False
if not return_dict:
return (images, has_nsfw_concept)
return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept)
def prepare_text_inputs(self, prompt: Union[str, List[str]]):
if not isinstance(prompt, (str, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
return text_input.input_ids
def prepare_image_inputs(self, image: Union[Image.Image, List[Image.Image]]):
if not isinstance(image, (Image.Image, list)):
raise ValueError(f"image has to be of type `PIL.Image.Image` or list but is {type(image)}")
if isinstance(image, Image.Image):
image = [image]
processed_images = jnp.concatenate([preprocess(img, jnp.float32) for img in image])
return processed_images
def _get_has_nsfw_concepts(self, features, params):
has_nsfw_concepts = self.safety_checker(features, params)
return has_nsfw_concepts
def _run_safety_checker(self, images, safety_model_params, jit=False):
# safety_model_params should already be replicated when jit is True
pil_images = [Image.fromarray(image) for image in images]
features = self.feature_extractor(pil_images, return_tensors="np").pixel_values
if jit:
features = shard(features)
has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params)
has_nsfw_concepts = unshard(has_nsfw_concepts)
safety_model_params = unreplicate(safety_model_params)
else:
has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params)
images_was_copied = False
for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
if has_nsfw_concept:
if not images_was_copied:
images_was_copied = True
images = images.copy()
images[idx] = np.zeros(images[idx].shape, dtype=np.uint8) # black image
if any(has_nsfw_concepts):
warnings.warn(
"Potential NSFW content was detected in one or more images. A black image will be returned"
" instead. Try again with a different prompt and/or seed."
)
return images, has_nsfw_concepts
def _generate(
self,
prompt_ids: jnp.array,
image: jnp.array,
params: Union[Dict, FrozenDict],
prng_seed: jax.random.KeyArray,
num_inference_steps: int,
guidance_scale: float,
latents: Optional[jnp.array] = None,
neg_prompt_ids: Optional[jnp.array] = None,
controlnet_conditioning_scale: float = 1.0,
xT = None,
smooth_bg_strength: float = 0.,
motion_field_strength_x: float = 12,
motion_field_strength_y: float = 12,
t0: int = 44,
t1: int = 47,
):
height, width = image.shape[-2:]
video_length = image.shape[0]
if height % 64 != 0 or width % 64 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 64 but are {height} and {width}.")
# get prompt text embeddings
prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0]
# TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0`
# implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0`
batch_size = prompt_ids.shape[0]
max_length = prompt_ids.shape[-1]
if neg_prompt_ids is None:
uncond_input = self.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np"
).input_ids
else:
uncond_input = neg_prompt_ids
negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0]
context = jnp.concatenate([negative_prompt_embeds, prompt_embeds])
image = jnp.concatenate([image] * 2)
seed_t2vz, prng_seed = jax.random.split(prng_seed)
#get the latent following text to video zero
latents = self.text_to_video_zero(params, seed_t2vz, text_embeddings=context, video_length=video_length,
height=height, width = width, num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale, controlnet_image=image,
xT=xT, smooth_bg_strength=smooth_bg_strength, t0=t0, t1=t1,
motion_field_strength_x=motion_field_strength_x,
motion_field_strength_y=motion_field_strength_y,
controlnet_conditioning_scale=controlnet_conditioning_scale
)
# scale and decode the image latents with vae
latents = 1 / self.vae.config.scaling_factor * latents
latents = rearrange(latents, "b c f h w -> (b f) c h w")
video = self.vae.apply({"params": params["vae"]}, latents, method=self.vae.decode).sample
video = (video / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1)
return video
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt_ids: jnp.array,
image: jnp.array,
params: Union[Dict, FrozenDict],
prng_seed: jax.random.KeyArray,
num_inference_steps: int = 50,
guidance_scale: Union[float, jnp.array] = 7.5,
latents: jnp.array = None,
neg_prompt_ids: jnp.array = None,
controlnet_conditioning_scale: Union[float, jnp.array] = 1.0,
return_dict: bool = True,
jit: bool = False,
xT = None,
smooth_bg_strength: float = 0.,
motion_field_strength_x: float = 3,
motion_field_strength_y: float = 4,
t0: int = 44,
t1: int = 47,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt_ids (`jnp.array`):
The prompt or prompts to guide the image generation.
image (`jnp.array`):
Array representing the ControlNet input condition. ControlNet use this input condition to generate
guidance to Unet.
params (`Dict` or `FrozenDict`): Dictionary containing the model parameters/weights
prng_seed (`jax.random.KeyArray` or `jax.Array`): Array containing random number generator key
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
latents (`jnp.array`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
controlnet_conditioning_scale (`float` or `jnp.array`, *optional*, defaults to 1.0):
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original unet.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] instead of
a plain tuple.
jit (`bool`, defaults to `False`):
Whether to run `pmap` versions of the generation and safety scoring functions. NOTE: This argument
exists because `__call__` is not yet end-to-end pmap-able. It will be removed in a future release.
Examples:
Returns:
[`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a
`tuple. When returning a tuple, the first element is a list with the generated images, and the second
element is a list of `bool`s denoting whether the corresponding generated image likely represents
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
"""
height, width = image.shape[-2:]
if isinstance(guidance_scale, float):
# Convert to a tensor so each device gets a copy. Follow the prompt_ids for
# shape information, as they may be sharded (when `jit` is `True`), or not.
guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0])
if len(prompt_ids.shape) > 2:
# Assume sharded
guidance_scale = guidance_scale[:, None]
if isinstance(controlnet_conditioning_scale, float):
# Convert to a tensor so each device gets a copy. Follow the prompt_ids for
# shape information, as they may be sharded (when `jit` is `True`), or not.
controlnet_conditioning_scale = jnp.array([controlnet_conditioning_scale] * prompt_ids.shape[0])
if len(prompt_ids.shape) > 2:
# Assume sharded
controlnet_conditioning_scale = controlnet_conditioning_scale[:, None]
if jit:
images = _p_generate(
self,
prompt_ids,
image,
params,
prng_seed,
num_inference_steps,
guidance_scale,
latents,
neg_prompt_ids,
controlnet_conditioning_scale,
xT,
smooth_bg_strength,
motion_field_strength_x,
motion_field_strength_y,
t0,
t1,
)
else:
images = self._generate(
prompt_ids,
image,
params,
prng_seed,
num_inference_steps,
guidance_scale,
latents,
neg_prompt_ids,
controlnet_conditioning_scale,
xT,
smooth_bg_strength,
motion_field_strength_x,
motion_field_strength_y,
t0,
t1,
)
if self.safety_checker is not None:
safety_params = params["safety_checker"]
images_uint8_casted = (images * 255).round().astype("uint8")
num_devices, batch_size = images.shape[:2]
images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3)
images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit)
images = np.asarray(images)
# block images
if any(has_nsfw_concept):
for i, is_nsfw in enumerate(has_nsfw_concept):
if is_nsfw:
images[i] = np.asarray(images_uint8_casted[i])
images = images.reshape(num_devices, batch_size, height, width, 3)
else:
images = np.asarray(images)
has_nsfw_concept = False
if not return_dict:
return (images, has_nsfw_concept)
return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept)
# Static argnums are pipe, num_inference_steps. A change would trigger recompilation.
# Non-static args are (sharded) input tensors mapped over their first dimension (hence, `0`).
@partial(
jax.pmap,
in_axes=(None, 0, 0, 0, 0, None, 0, 0, 0, 0, 0, 0, 0, 0, None, None),
static_broadcasted_argnums=(0, 5, 14, 15)
)
def _p_generate(
pipe,
prompt_ids,
image,
params,
prng_seed,
num_inference_steps,
guidance_scale,
latents,
neg_prompt_ids,
controlnet_conditioning_scale,
xT,
smooth_bg_strength,
motion_field_strength_x,
motion_field_strength_y,
t0,
t1,
):
return pipe._generate(
prompt_ids,
image,
params,
prng_seed,
num_inference_steps,
guidance_scale,
latents,
neg_prompt_ids,
controlnet_conditioning_scale,
xT,
smooth_bg_strength,
motion_field_strength_x,
motion_field_strength_y,
t0,
t1,
)
@partial(jax.pmap, static_broadcasted_argnums=(0,))
def _p_get_has_nsfw_concepts(pipe, features, params):
return pipe._get_has_nsfw_concepts(features, params)
@partial(
jax.pmap,
in_axes=(None, None, 0, 0, 0, 0, 0, 0, 0),
static_broadcasted_argnums=(0, 1)
)
def p_generate_starting_frames(pipe, num_inference_steps, params, timesteps, text_embeddings, latents, guidance_scale, controlnet_image, controlnet_conditioning_scale):
# perform ∆t backward steps by stable diffusion
# delta_t_diffusion = jax.vmap(lambda latent : self.DDIM_backward(params, num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=1000, t0=t0, t1=t1, do_classifier_free_guidance=do_classifier_free_guidance,
# text_embeddings=text_embeddings, latents_local=latent, guidance_scale=guidance_scale,
# controlnet_image=controlnet_image, controlnet_conditioning_scale=controlnet_conditioning_scale))
# ddim_res = delta_t_diffusion(latents)
# latents = ddim_res["x0"] #output is i b c f h w
# DDPM forward for more motion freedom
# ddpm_fwd = jax.vmap(lambda prng, latent: self.DDPM_forward(params=params, prng=prng, x0=latent, t0=t0,
# tMax=t1, shape=shape, text_embeddings=text_embeddings))
# latents = ddpm_fwd(stacked_prngs, latents)
# main backward diffusion
# denoise_first_frame = lambda latent : self.DDIM_backward(params, num_inference_steps=num_inference_steps, timesteps=timesteps, skip_t=100000, t0=-1, t1=-1, do_classifier_free_guidance=do_classifier_free_guidance,
# text_embeddings=text_embeddings, latents_local=latent, guidance_scale=guidance_scale,
# controlnet_image=controlnet_image, controlnet_conditioning_scale=controlnet_conditioning_scale)
# latents = rearrange(latents, 'i b c f h w -> (i b) c f h w')
# ddim_res = denoise_first_frame(latents)
latents = pipe.denoise_latent(params, num_inference_steps=num_inference_steps, timesteps=timesteps, do_classifier_free_guidance=True,
text_embeddings=text_embeddings, latents=latents, guidance_scale=guidance_scale,
controlnet_image=controlnet_image, controlnet_conditioning_scale=controlnet_conditioning_scale)
# latents = rearrange(ddim_res["x0"], 'i b c f h w -> (i b) c f h w') #output is i b c f h w
# scale and decode the image latents with vae
latents = 1 / pipe.vae.config.scaling_factor * latents
# latents = rearrange(latents, "b c h w -> (b f) c h w")
imgs = pipe.vae.apply({"params": params["vae"]}, latents, method=pipe.vae.decode).sample
imgs = (imgs / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1)
return imgs
def unshard(x: jnp.ndarray):
# einops.rearrange(x, 'd b ... -> (d b) ...')
num_devices, batch_size = x.shape[:2]
rest = x.shape[2:]
return x.reshape(num_devices * batch_size, *rest)
def preprocess(image, dtype):
image = image.convert("RGB")
w, h = image.size
w, h = (x - x % 64 for x in (w, h)) # resize to integer multiple of 64
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
image = jnp.array(image).astype(dtype) / 255.0
image = image[None].transpose(0, 3, 1, 2)
return image
def prepare_latents(params, prng, batch_size, num_channels_latents, height, width, vae_scale_factor, latents=None):
shape = (batch_size, num_channels_latents, 1, height //
vae_scale_factor, width // vae_scale_factor) #b c f h w
# scale the initial noise by the standard deviation required by the scheduler
if latents is None:
latents = jax.random.normal(prng, shape)
latents = latents * params["scheduler"].init_noise_sigma
return latents
def coords_grid(batch, ht, wd):
coords = jnp.meshgrid(jnp.arange(ht), jnp.arange(wd), indexing="ij")
coords = jnp.stack(coords[::-1], axis=0)
return coords[None].repeat(batch, 0)
def adapt_pos_mirror(x, y, W, H):
#adapt the position, with mirror padding
x_w_mirror = ((x + W - 1) % (2*(W - 1))) - W + 1
x_adapted = jnp.where(x_w_mirror > 0, x_w_mirror, - (x_w_mirror))
y_w_mirror = ((y + H - 1) % (2*(H - 1))) - H + 1
y_adapted = jnp.where(y_w_mirror > 0, y_w_mirror, - (y_w_mirror))
return y_adapted, x_adapted
def safe_get_zeropad(img, x,y,W,H):
return jnp.where((x < W) & (x > 0) & (y < H) & (y > 0), img[y,x], 0.)
def safe_get_mirror(img, x,y,W,H):
return img[adapt_pos_mirror(x,y,W,H)]
@partial(jax.vmap, in_axes=(0, 0, None))
@partial(jax.vmap, in_axes=(0, None, None))
@partial(jax.vmap, in_axes=(None,0, None))
@partial(jax.vmap, in_axes=(None, 0, None))
def grid_sample(latents, grid, method):
# this is an alternative to torch.functional.nn.grid_sample in jax
# this implementation is following the algorithm described @ https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
# but with coordinates scaled to the size of the image
if method == "mirror":
return safe_get_mirror(latents, jnp.array(grid[0], dtype=jnp.int16), jnp.array(grid[1], dtype=jnp.int16), latents.shape[0], latents.shape[1])
else: #default is zero padding
return safe_get_zeropad(latents, jnp.array(grid[0], dtype=jnp.int16), jnp.array(grid[1], dtype=jnp.int16), latents.shape[0], latents.shape[1])
def bandw_vid(vid, threshold):
vid = jnp.max(vid, axis=1)
return jnp.where(vid > threshold, 1, 0)
def mean_blur(vid, k):
window = jnp.ones((vid.shape[0], k, k))/ (k*k)
convolve=jax.vmap(lambda img, kernel:jax.scipy.signal.convolve(img, kernel, mode='same'))
smooth_vid = convolve(vid, window)
return smooth_vid
def get_mask_pose(vid):
vid = bandw_vid(vid, 0.4)
l, h, w = vid.shape
vid = jax.image.resize(vid, (l, h//8, w//8), "nearest")
vid=bandw_vid(mean_blur(vid, 7)[:,None], threshold=0.01)
return vid/(jnp.max(vid) + 1e-4)
#return jax.image.resize(vid/(jnp.max(vid) + 1e-4), (l, h, w), "nearest") |