Spaces:
Sleeping
Sleeping
File size: 26,854 Bytes
0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a bcdbab3 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a 8bc5401 0a5935a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 |
#!/usr/bin/env python3
"""
Code Flow Analyzer with Gradio Interface - Hugging Face Spaces & Colab Compatible
A single-file application that uses LangChain agents with the Gemini model to analyze code structure
and generate Mermaid.js flowchart diagrams through a web interface.
"""
import ast
import re
import os
import traceback
import sys
from typing import Dict, Any, List, Tuple
import getpass
# Check if running in Colab
try:
import google.colab
IN_COLAB = True
print("π’ Running in Google Colab")
except ImportError:
IN_COLAB = False
print("π‘ Running locally or in Hugging Face Spaces")
# Install dependencies if in Colab
if IN_COLAB:
print("π¦ Installing dependencies...")
os.system("pip install -q gradio langchain langgraph langchain-google-genai")
print("β
Dependencies installed")
import gradio as gr
from langchain.chat_models import init_chat_model
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.tools import tool
from langgraph.prebuilt import create_react_agent
from langgraph.checkpoint.memory import MemorySaver
# Sample code examples (unchanged)
SAMPLE_PYTHON = '''def main():
user_input = get_user_input()
if user_input:
result = process_data(user_input)
if result > 0:
display_result(result)
else:
show_error()
else:
show_help()
def get_user_input():
return input("Enter data: ")
def process_data(data):
for i in range(len(data)):
if data[i].isdigit():
return int(data[i])
return -1
def display_result(result):
print(f"Result: {result}")
def show_error():
print("Error processing data")
def show_help():
print("Please provide valid input")'''
SAMPLE_JAVASCRIPT = '''function calculateTotal(items) {
let total = 0;
for (let item of items) {
if (item.price > 0) {
total += item.price;
}
}
return total;
}
function processOrder(order) {
if (validateOrder(order)) {
const total = calculateTotal(order.items);
if (total > 100) {
applyDiscount(order);
}
return generateReceipt(order);
} else {
throw new Error("Invalid order");
}
}
function validateOrder(order) {
return order && order.items && order.items.length > 0;
}
function applyDiscount(order) {
order.discount = 0.1; // 10% discount
}
function generateReceipt(order) {
return {
items: order.items,
total: calculateTotal(order.items),
timestamp: new Date()
};
}'''
SAMPLE_JAVA = '''public class Calculator {
public static void main(String[] args) {
Calculator calc = new Calculator();
int result = calc.performCalculation();
calc.displayResult(result);
}
public int performCalculation() {
int a = getUserInput();
int b = getUserInput();
if (a > b) {
return multiply(a, b);
} else {
return add(a, b);
}
}
private int add(int x, int y) {
return x + y;
}
private int multiply(int x, int y) {
return x * y;
}
private int getUserInput() {
return 5; // Simplified for demo
}
private void displayResult(int result) {
System.out.println("Result: " + result);
}
}'''
# --- Gemini API Key Setup ---
def setup_api_key():
"""Setup API key for Colab, Hugging Face Spaces, and local environments"""
api_key = os.getenv("GOOGLE_API_KEY")
if not api_key:
if IN_COLAB:
print("π Please enter your Google API key:")
print(" Get a key from: https://aistudio.google.com/app/apikey")
api_key = getpass.getpass("GOOGLE_API_KEY: ")
if api_key:
os.environ["GOOGLE_API_KEY"] = api_key
print("β
API key set successfully")
else:
print("β οΈ No API key provided - agent features will be disabled")
else:
print("β οΈ GOOGLE_API_KEY not found in environment variables")
print(" Set it with: export GOOGLE_API_KEY='your-key-here'")
print(" In Hugging Face Spaces, use the 'Secrets' tab to set the key.")
else:
print("β
Google API key found")
return api_key or os.getenv("GOOGLE_API_KEY")
# Setup API key
api_key = setup_api_key()
# Initialize LangChain components
model = None
memory = None
agent_executor = None
if api_key:
try:
model = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
print("β
Gemini model initialized successfully:gemini-2.0-flash")
memory = MemorySaver()
except Exception as e:
print(f"β Could not initialize Gemini model: {e}")
print(" Please check your API key and internet connection.")
model = None
memory = None
# --- Tool Definitions (unchanged) ---
@tool
def analyze_code_structure(source_code: str) -> Dict[str, Any]:
"""
Analyzes source code structure to identify functions, control flow, and dependencies.
Returns structured data about the code that can be used to generate flow diagrams.
"""
try:
# Try to parse as Python first
try:
tree = ast.parse(source_code)
return _analyze_python_ast(tree)
except SyntaxError:
# If Python parsing fails, do basic text analysis
return _analyze_code_text(source_code)
except Exception as e:
return {"error": f"Analysis error: {str(e)}"}
def _analyze_python_ast(tree) -> Dict[str, Any]:
"""Analyze Python AST"""
analysis = {
"functions": [],
"classes": [],
"control_flows": [],
"imports": [],
"call_graph": {}
}
class CodeAnalyzer(ast.NodeVisitor):
def __init__(self):
self.current_function = None
def visit_FunctionDef(self, node):
func_info = {
"name": node.name,
"line": node.lineno,
"args": [arg.arg for arg in node.args.args],
"calls": [],
"conditions": [],
"loops": []
}
self.current_function = node.name
analysis["call_graph"][node.name] = []
# Analyze function body
for child in ast.walk(node):
if isinstance(child, ast.Call):
if hasattr(child.func, 'id'):
func_info["calls"].append(child.func.id)
analysis["call_graph"][node.name].append(child.func.id)
elif hasattr(child.func, 'attr'):
func_info["calls"].append(child.func.attr)
elif isinstance(child, ast.If):
func_info["conditions"].append(f"if condition at line {child.lineno}")
elif isinstance(child, (ast.For, ast.While)):
loop_type = "for" if isinstance(child, ast.For) else "while"
func_info["loops"].append(f"{loop_type} loop at line {child.lineno}")
analysis["functions"].append(func_info)
self.generic_visit(node)
def visit_ClassDef(self, node):
class_info = {
"name": node.name,
"line": node.lineno,
"methods": []
}
for item in node.body:
if isinstance(item, ast.FunctionDef):
class_info["methods"].append(item.name)
analysis["classes"].append(class_info)
self.generic_visit(node)
def visit_Import(self, node):
for alias in node.names:
analysis["imports"].append(alias.name)
self.generic_visit(node)
def visit_ImportFrom(self, node):
module = node.module or ""
for alias in node.names:
analysis["imports"].append(f"{module}.{alias.name}")
self.generic_visit(node)
analyzer = CodeAnalyzer()
analyzer.visit(tree)
return analysis
def _analyze_code_text(source_code: str) -> Dict[str, Any]:
"""Basic text-based code analysis for non-Python code"""
lines = source_code.split('\n')
analysis = {
"functions": [],
"classes": [],
"control_flows": [],
"imports": [],
"call_graph": {}
}
for i, line in enumerate(lines, 1):
line = line.strip()
# JavaScript function detection
js_func_match = re.match(r'function\s+(\w+)\s*\(', line)
if js_func_match:
func_name = js_func_match.group(1)
analysis["functions"].append({
"name": func_name,
"line": i,
"args": [],
"calls": [],
"conditions": [],
"loops": []
})
analysis["call_graph"][func_name] = []
# Java/C++ method detection
java_method_match = re.match(r'(?:public|private|protected)?\s*(?:static)?\s*\w+\s+(\w+)\s*\(', line)
if java_method_match and not js_func_match:
func_name = java_method_match.group(1)
if func_name not in ['class', 'if', 'for', 'while']: # Avoid keywords
analysis["functions"].append({
"name": func_name,
"line": i,
"args": [],
"calls": [],
"conditions": [],
"loops": []
})
analysis["call_graph"][func_name] = []
# Control structures
if re.match(r'\s*(if|else|elif|switch)\s*[\(\{]', line):
analysis["control_flows"].append(f"condition at line {i}")
if re.match(r'\s*(for|while|do)\s*[\(\{]', line):
analysis["control_flows"].append(f"loop at line {i}")
return analysis
@tool
def generate_mermaid_diagram(analysis_data: Dict[str, Any]) -> str:
"""
Generates a Mermaid.js flowchart diagram from code analysis data.
Creates a visual representation of the code flow including function calls and control structures.
"""
if "error" in analysis_data:
return f"flowchart TD\n Error[β {analysis_data['error']}]"
functions = analysis_data.get("functions", [])
call_graph = analysis_data.get("call_graph", {})
if not functions:
return """flowchart TD
Start([π Program Start]) --> NoFunc[No Functions Found]
NoFunc --> End([π Program End])
classDef startEnd fill:#e1f5fe,stroke:#01579b,stroke-width:2px
classDef warning fill:#fff3e0,stroke:#e65100,stroke-width:2px
class Start,End startEnd
class NoFunc warning"""
mermaid_lines = ["flowchart TD"]
mermaid_lines.append(" Start([π Program Start]) --> Main")
# Create nodes for each function
func_nodes = []
for i, func in enumerate(functions):
func_name = func["name"]
safe_name = re.sub(r'[^a-zA-Z0-9_]', '_', func_name)
node_id = f"F{i}_{safe_name}"
func_nodes.append(node_id)
# Function node with emoji
mermaid_lines.append(f" {node_id}[βοΈ {func_name}()]")
# Add control structures within function
conditions = func.get("conditions", [])
loops = func.get("loops", [])
if conditions:
for j, condition in enumerate(conditions[:2]): # Limit to 2 conditions per function
cond_id = f"{node_id}_C{j}"
mermaid_lines.append(f" {node_id} --> {cond_id}{{π€ Decision}}")
mermaid_lines.append(f" {cond_id} -->|Yes| {node_id}_Y{j}[β
True Path]")
mermaid_lines.append(f" {cond_id} -->|No| {node_id}_N{j}[β False Path]")
if loops:
for j, loop in enumerate(loops[:1]): # Limit to 1 loop per function
loop_id = f"{node_id}_L{j}"
loop_type = "π Loop" if "for" in loop else "β° While Loop"
mermaid_lines.append(f" {node_id} --> {loop_id}[{loop_type}]")
mermaid_lines.append(f" {loop_id} --> {loop_id}") # Self-loop
# Connect main flow
if func_nodes:
mermaid_lines.append(f" Main --> {func_nodes[0]}")
# Connect functions in sequence (simplified)
for i in range(len(func_nodes) - 1):
mermaid_lines.append(f" {func_nodes[i]} --> {func_nodes[i + 1]}")
# Connect to end
mermaid_lines.append(f" {func_nodes[-1]} --> End([π Program End])")
# Add function call relationships (simplified to avoid clutter)
call_count = 0
for caller, callees in call_graph.items():
if call_count >= 3: # Limit number of call relationships
break
caller_node = None
for node in func_nodes:
if caller.lower() in node.lower():
caller_node = node
break
if caller_node:
for callee in callees[:2]: # Limit callees per function
callee_node = None
for node in func_nodes:
if callee.lower() in node.lower():
callee_node = node
break
if callee_node and callee_node != caller_node:
mermaid_lines.append(f" {caller_node} -.->|calls| {callee_node}")
call_count += 1
# Add styling
mermaid_lines.extend([
"",
" classDef startEnd fill:#e1f5fe,stroke:#01579b,stroke-width:3px,color:#000",
" classDef process fill:#f3e5f5,stroke:#4a148c,stroke-width:2px,color:#000",
" classDef decision fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#000",
" classDef success fill:#e8f5e8,stroke:#2e7d32,stroke-width:2px,color:#000",
" classDef error fill:#ffebee,stroke:#c62828,stroke-width:2px,color:#000",
"",
" class Start,End startEnd",
f" class {','.join(func_nodes)} process" if func_nodes else ""
])
return "\n".join(mermaid_lines)
@tool
def calculate_complexity_score(analysis_data: Dict[str, Any]) -> int:
"""
Calculates a complexity score for the code based on various metrics.
Higher scores indicate more complex code structure.
"""
if "error" in analysis_data:
return 0
score = 0
functions = analysis_data.get("functions", [])
# Base score for number of functions
score += len(functions) * 3
# Add score for control structures
for func in functions:
score += len(func.get("conditions", [])) * 4 # Conditions add complexity
score += len(func.get("loops", [])) * 3 # Loops add complexity
score += len(func.get("calls", [])) * 1 # Function calls add some complexity
score += len(func.get("args", [])) * 1 # Parameters add complexity
# Add score for classes
score += len(analysis_data.get("classes", [])) * 5
return min(score, 100) # Cap at 100
# Create the agent if model is available
if model and memory:
tools = [analyze_code_structure, generate_mermaid_diagram, calculate_complexity_score]
agent_executor = create_react_agent(model, tools, checkpointer=memory)
print("β
LangChain agent created successfully")
else:
agent_executor = None
print("β LangChain agent not available")
def analyze_code_with_agent(source_code: str, language: str = "auto") -> Tuple[str, str, List[str], int, str]:
"""
Main function that uses the LangChain agent to analyze code and generate diagrams.
Returns: (mermaid_diagram, analysis_summary, functions_found, complexity_score, error_message)
"""
if not source_code.strip():
return "", "No code provided", [], 0, "Please enter some source code to analyze"
if not agent_executor:
return "", "Agent not available", [], 0, "β LangChain agent not initialized. Please check your GOOGLE_API_KEY"
try:
# Detect language if auto
if language == "auto":
if "def " in source_code or "import " in source_code:
language = "Python"
elif "function " in source_code or "const " in source_code or "let " in source_code:
language = "JavaScript"
elif ("public " in source_code and "class " in source_code) or "System.out" in source_code:
language = "Java"
elif "#include" in source_code or "std::" in source_code:
language = "C++"
else:
language = "Unknown"
config = {
"configurable": {"thread_id": f"session_{hash(source_code) % 10000}"},
"recursion_limit": 100
}
# Refined prompt for better tool use
prompt = f"""
You are a code analysis expert. Analyze the following {language} source code.
Your task is to:
1. Use the 'analyze_code_structure' tool with the full source code provided below.
2. Use the 'generate_mermaid_diagram' tool with the output of the first tool.
3. Use the 'calculate_complexity_score' tool with the output of the first tool.
4. Provide a brief, human-readable summary of the analysis, including the generated Mermaid diagram, complexity score, and a list of functions found.
5. Present the final result in a clear, easy-to-read format.
Source Code to Analyze:
```{language.lower()}
{source_code}
```
"""
result = agent_executor.invoke(
{"messages": [{"role": "user", "content": prompt}]},
config
)
if result and "messages" in result:
response_content = result["messages"][-1].content
# Extract Mermaid diagram
mermaid_match = re.search(r'```mermaid\n(.*?)\n```', response_content, re.DOTALL)
mermaid_diagram = mermaid_match.group(1) if mermaid_match else ""
# Extract complexity score
complexity_match = re.search(r'complexity.*?(\d+)', response_content, re.IGNORECASE)
complexity_score = int(complexity_match.group(1)) if complexity_match else 0
# Extract functions
functions_found = []
func_matches = re.findall(r'Functions found:.*?([^\n]+)', response_content, re.IGNORECASE)
if func_matches:
functions_found = [f.strip() for f in func_matches[0].split(',')]
else:
# Fallback: extract from analysis
analysis_result = analyze_code_structure.invoke({"source_code": source_code})
functions_found = [f["name"] for f in analysis_result.get("functions", [])]
# Clean up the response for summary
summary = re.sub(r'```mermaid.*?```', '', response_content, flags=re.DOTALL)
summary = re.sub(r'flowchart TD.*?(?=\n\n|\Z)', '', summary, flags=re.DOTALL)
summary = summary.strip()
if not mermaid_diagram and not summary:
# Last resort fallback if agent fails entirely
analysis_result = analyze_code_structure.invoke({"source_code": source_code})
mermaid_diagram = generate_mermaid_diagram.invoke({"analysis_data": analysis_result})
complexity_score = calculate_complexity_score.invoke({"analysis_data": analysis_result})
functions_found = [f["name"] for f in analysis_result.get("functions", [])]
summary = "Agent failed to provide a detailed summary, but a fallback analysis was successful."
return mermaid_diagram, summary, functions_found, complexity_score, ""
except Exception as e:
error_msg = f"β Analysis failed: {str(e)}"
print(f"Error details: {traceback.format_exc()}")
return "", "", [], 0, error_msg
# --- Gradio Interface Setup (unchanged) ---
def create_gradio_interface():
"""Create and configure the Gradio interface"""
def analyze_code_gradio(code, language):
"""Wrapper function for Gradio interface"""
if not code.strip():
return (
"Please enter some code to analyze",
"",
"No analysis performed",
"Functions: 0 | Complexity: 0/100",
""
)
mermaid, summary, functions, complexity, error = analyze_code_with_agent(code, language)
if error:
return (
error,
"",
"Analysis failed",
"Functions: 0 | Complexity: 0/100",
""
)
# Format the outputs
mermaid_display = f"```mermaid\n{mermaid}\n```" if mermaid else "No diagram generated"
functions_display = f"**Functions Found:** {', '.join(functions)}" if functions else "No functions detected"
stats_display = f"Functions: {len(functions)} | Complexity: {complexity}/100"
return (
"β
Analysis completed successfully!",
mermaid_display,
summary,
stats_display,
functions_display
)
# Define the interface
with gr.Blocks(
title="π Code Flow Analyzer",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.code-input {
font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', monospace !important;
}
"""
) as interface:
gr.Markdown("""
# π Code Flow Analyzer
**LangChain Agent + Mermaid.js** β’ Visualize Your Code Flow
This tool uses AI agents to analyze your source code and generate visual flowchart diagrams.
""")
# API Status
model_info = ""
if agent_executor and model:
model_info = " (Gemini LLM)"
api_status = f"π’ Gemini LangChain Agent Ready{model_info}" if agent_executor else "π΄ Agent Not Available (Check GOOGLE_API_KEY)"
gr.Markdown(f"**Status:** {api_status}")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π Source Code Input")
language_dropdown = gr.Dropdown(
choices=["auto", "Python", "JavaScript", "Java", "C++", "Other"],
value="auto",
label="Programming Language",
info="Auto-detection usually works well"
)
code_input = gr.TextArea(
placeholder="Paste your source code here...",
lines=15,
label="Source Code",
elem_classes=["code-input"]
)
with gr.Row():
gr.Examples(
examples=[
[SAMPLE_PYTHON, "Python"],
[SAMPLE_JAVASCRIPT, "JavaScript"],
[SAMPLE_JAVA, "Java"]
],
inputs=[code_input, language_dropdown],
label="Quick Examples"
)
analyze_btn = gr.Button(
"π Analyze Code Flow",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
gr.Markdown("### π Analysis Results")
status_output = gr.Textbox(
label="Status",
interactive=False
)
stats_output = gr.Textbox(
label="Statistics",
interactive=False
)
functions_output = gr.Markdown(
label="Functions Found"
)
with gr.Row():
with gr.Column():
gr.Markdown("### π¨ Generated Mermaid Diagram")
mermaid_output = gr.Textbox(
label="Mermaid Code",
lines=15,
max_lines=20,
interactive=True,
show_copy_button=True
)
gr.Markdown("""
**π‘ How to visualize:**
1. Copy the Mermaid code above
2. Visit [mermaid.live](https://mermaid.live)
3. Paste and see your code flow diagram!
**π± For Colab users:**
- The Mermaid code above shows your program's flow structure
- Copy it to mermaid.live for a beautiful visual diagram
- Try the examples above to see different code patterns
""")
with gr.Row():
with gr.Column():
gr.Markdown("### π Analysis Summary")
summary_output = gr.Textbox(
label="AI Agent Analysis",
lines=8,
interactive=False
)
# Connect the analyze button
analyze_btn.click(
fn=analyze_code_gradio,
inputs=[code_input, language_dropdown],
outputs=[status_output, mermaid_output, summary_output, stats_output, functions_output]
)
# Footer
environment_info = "Google Colab" if IN_COLAB else "Hugging Face Spaces or Local Environment"
gr.Markdown(f"""
---
**π οΈ Running in:** {environment_info}
**π¦ Dependencies:** gradio, langchain, langgraph, langchain-google-genai
**π§ Powered by:** LangChain Agents, Google Gemini, Mermaid.js, Gradio
**π Get Google API Key:** [aistudio.google.com/app/apikey](https://aistudio.google.com/app/apikey)
""")
return interface
def main():
"""Main function to run the application"""
print("π Code Flow Analyzer with Gradio")
print("=" * 50)
print(f"π Environment: {'Google Colab' if IN_COLAB else 'Hugging Face Spaces or Local'}")
if agent_executor:
print("β
LangChain agent ready")
else:
print("β LangChain agent not available")
if IN_COLAB:
print(" π‘ Restart this cell and enter your GOOGLE_API_KEY when prompted")
else:
print(" π‘ Please set your GOOGLE_API_KEY as an environment variable or secret")
print("\nπ Starting Gradio interface...")
# Create and launch the interface
interface = create_gradio_interface()
# Launch configuration for Colab vs local/Spaces
interface.launch(
share=True if IN_COLAB else False,
debug=False,
height=600,
show_error=True
)
# Auto-run if in Colab or when script is executed directly
if __name__ == "__main__" or IN_COLAB:
main() |