File size: 4,162 Bytes
8b21bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dea3c29
4700841
 
8b21bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import sys

import fire
import gradio as gr
import torch
import transformers
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer

from typing import Union
import re


class Prompter(object):
    def generate_prompt(
        self,
        instruction: str,
        label: Union[None, str] = None,
    ) -> str:
        res = f"{instruction}\nAnswer: "

        if label:
            res = f"{res}{label}"

        return res

    def get_response(self, output: str) -> str:
        return (
            output.split("Answer:")[1]
            .strip()
            .replace("/", "\u00F7")
            .replace("*", "\u00D7")
        )


load_8bit = False  # for Colab
base_model = "nickypro/tinyllama-15M"
lora_weights = "./chkp"
share_gradio = True

if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

try:
    if torch.backends.mps.is_available():
        device = "mps"
except:
    pass

prompter = Prompter()

tokenizer = LlamaTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
if device == "cuda":
    model = LlamaForCausalLM.from_pretrained(
        base_model,
        load_in_8bit=load_8bit,
        torch_dtype=torch.float16,
        device_map="auto",
    )
    model = PeftModel.from_pretrained(
        model,
        lora_weights,
        torch_dtype=torch.float16,
        device_map={"": 0},
    )
elif device == "mps":
    model = LlamaForCausalLM.from_pretrained(
        base_model,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
    model = PeftModel.from_pretrained(
        model,
        lora_weights,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
else:
    model = LlamaForCausalLM.from_pretrained(
        base_model, device_map={"": device}, low_cpu_mem_usage=True
    )
    model = PeftModel.from_pretrained(
        model,
        lora_weights,
        device_map={"": device},
    )

if not load_8bit:
    model.half()

model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
    model = torch.compile(model)


def evaluate(
    instruction,
    temperature=0.1,
    top_p=0.75,
    top_k=40,
    num_beams=4,
    max_new_tokens=512,
    stream_output=True,
    **kwargs,
):
    prompt = prompter.generate_prompt(instruction)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to(device)
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        **kwargs,
    )

    generate_params = {
        "input_ids": input_ids,
        "generation_config": generation_config,
        "return_dict_in_generate": True,
        "output_scores": True,
        "max_new_tokens": max_new_tokens,
    }

    # Without streaming
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s, skip_special_tokens=True).strip()
    yield prompter.get_response(output)


gr.Interface(
    fn=evaluate,
    inputs=[
        gr.components.Textbox(
            lines=1,
            label="Arithmetic",
            placeholder="What is 63303235 + 20239503",
        ),
        gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
        gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
        gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
        gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
        gr.components.Slider(
            minimum=1, maximum=1024, step=1, value=512, label="Max tokens"
        ),
    ],
    outputs=[
        gr.Textbox(
            lines=5,
            label="Output",
        )
    ],
    title="test model",
    description="Это пример реализации из goat",  # noqa: E501
).queue().launch(share=share_gradio)