File size: 4,162 Bytes
8b21bf3 dea3c29 4700841 8b21bf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import os
import sys
import fire
import gradio as gr
import torch
import transformers
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
from typing import Union
import re
class Prompter(object):
def generate_prompt(
self,
instruction: str,
label: Union[None, str] = None,
) -> str:
res = f"{instruction}\nAnswer: "
if label:
res = f"{res}{label}"
return res
def get_response(self, output: str) -> str:
return (
output.split("Answer:")[1]
.strip()
.replace("/", "\u00F7")
.replace("*", "\u00D7")
)
load_8bit = False # for Colab
base_model = "nickypro/tinyllama-15M"
lora_weights = "./chkp"
share_gradio = True
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
prompter = Prompter()
tokenizer = LlamaTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
device_map={"": 0},
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
base_model, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
)
if not load_8bit:
model.half()
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
instruction,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=512,
stream_output=True,
**kwargs,
):
prompt = prompter.generate_prompt(instruction)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
generate_params = {
"input_ids": input_ids,
"generation_config": generation_config,
"return_dict_in_generate": True,
"output_scores": True,
"max_new_tokens": max_new_tokens,
}
# Without streaming
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s, skip_special_tokens=True).strip()
yield prompter.get_response(output)
gr.Interface(
fn=evaluate,
inputs=[
gr.components.Textbox(
lines=1,
label="Arithmetic",
placeholder="What is 63303235 + 20239503",
),
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
gr.components.Slider(
minimum=1, maximum=1024, step=1, value=512, label="Max tokens"
),
],
outputs=[
gr.Textbox(
lines=5,
label="Output",
)
],
title="test model",
description="Это пример реализации из goat", # noqa: E501
).queue().launch(share=share_gradio)
|