File size: 9,232 Bytes
19c8b95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import torch
from torch import nn
from torch.nn import functional as F


class ConvNorm(torch.nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
                 padding=None, dilation=1, bias=True, w_init_gain='linear'):
        super(ConvNorm, self).__init__()
        if padding is None:
            assert(kernel_size % 2 == 1)
            padding = int(dilation * (kernel_size - 1) / 2)

        self.conv = torch.nn.Conv1d(in_channels, out_channels,
                                    kernel_size=kernel_size, stride=stride,
                                    padding=padding, dilation=dilation,
                                    bias=bias)

        torch.nn.init.xavier_uniform_(
            self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain))

    def forward(self, signal):
        conv_signal = self.conv(signal)
        return conv_signal


class Invertible1x1ConvLUS(torch.nn.Module):
    def __init__(self, c):
        super(Invertible1x1ConvLUS, self).__init__()
        # Sample a random orthonormal matrix to initialize weights
        W, _ = torch.linalg.qr(torch.randn(c, c))
        # Ensure determinant is 1.0 not -1.0
        if torch.det(W) < 0:
            W[:, 0] = -1*W[:, 0]
        p, lower, upper = torch.lu_unpack(*torch.lu(W))

        self.register_buffer('p', p)
        # diagonals of lower will always be 1s anyway
        lower = torch.tril(lower, -1)
        lower_diag = torch.diag(torch.eye(c, c))
        self.register_buffer('lower_diag', lower_diag)
        self.lower = nn.Parameter(lower)
        self.upper_diag = nn.Parameter(torch.diag(upper))
        self.upper = nn.Parameter(torch.triu(upper, 1))

    def forward(self, z, reverse=False):
        U = torch.triu(self.upper, 1) + torch.diag(self.upper_diag)
        L = torch.tril(self.lower, -1) + torch.diag(self.lower_diag)
        W = torch.mm(self.p, torch.mm(L, U))
        if reverse:
            if not hasattr(self, 'W_inverse'):
                # Reverse computation
                W_inverse = W.float().inverse()
                if z.type() == 'torch.cuda.HalfTensor':
                    W_inverse = W_inverse.half()

                self.W_inverse = W_inverse[..., None]
            z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
            return z
        else:
            W = W[..., None]
            z = F.conv1d(z, W, bias=None, stride=1, padding=0)
            log_det_W = torch.sum(torch.log(torch.abs(self.upper_diag)))
            return z, log_det_W


class ConvAttention(torch.nn.Module):
    def __init__(self, n_mel_channels=80, n_speaker_dim=128,
                 n_text_channels=512, n_att_channels=80, temperature=1.0,
                 n_mel_convs=2, align_query_enc_type='3xconv',
                 use_query_proj=True):
        super(ConvAttention, self).__init__()
        self.temperature = temperature
        self.att_scaling_factor = np.sqrt(n_att_channels)
        self.softmax = torch.nn.Softmax(dim=3)
        self.log_softmax = torch.nn.LogSoftmax(dim=3)
        self.query_proj = Invertible1x1ConvLUS(n_mel_channels)
        self.attn_proj = torch.nn.Conv2d(n_att_channels, 1, kernel_size=1)
        self.align_query_enc_type = align_query_enc_type
        self.use_query_proj = bool(use_query_proj)

        self.key_proj = nn.Sequential(
            ConvNorm(n_text_channels,
                     n_text_channels * 2,
                     kernel_size=3,
                     bias=True,
                     w_init_gain='relu'),
            torch.nn.ReLU(),
            ConvNorm(n_text_channels * 2,
                     n_att_channels,
                     kernel_size=1,
                     bias=True))

        self.align_query_enc_type = align_query_enc_type

        if align_query_enc_type == "inv_conv":
            self.query_proj = Invertible1x1ConvLUS(n_mel_channels)
        elif align_query_enc_type == "3xconv":
            self.query_proj = nn.Sequential(
                ConvNorm(n_mel_channels,
                         n_mel_channels * 2,
                         kernel_size=3,
                         bias=True,
                         w_init_gain='relu'),
                torch.nn.ReLU(),
                ConvNorm(n_mel_channels * 2,
                         n_mel_channels,
                         kernel_size=1,
                         bias=True),
                torch.nn.ReLU(),
                ConvNorm(n_mel_channels,
                         n_att_channels,
                         kernel_size=1,
                         bias=True))
        else:
            raise ValueError("Unknown query encoder type specified")

    def run_padded_sequence(self, sorted_idx, unsort_idx, lens, padded_data,
                            recurrent_model):
        """Sorts input data by previded ordering (and un-ordering) and runs the
        packed data through the recurrent model

        Args:
            sorted_idx (torch.tensor): 1D sorting index
            unsort_idx (torch.tensor): 1D unsorting index (inverse of sorted_idx)
            lens: lengths of input data (sorted in descending order)
            padded_data (torch.tensor): input sequences (padded)
            recurrent_model (nn.Module): recurrent model to run data through
        Returns:
            hidden_vectors (torch.tensor): outputs of the RNN, in the original,
            unsorted, ordering
        """

        # sort the data by decreasing length using provided index
        # we assume batch index is in dim=1
        padded_data = padded_data[:, sorted_idx]
        padded_data = nn.utils.rnn.pack_padded_sequence(padded_data, lens)
        hidden_vectors = recurrent_model(padded_data)[0]
        hidden_vectors, _ = nn.utils.rnn.pad_packed_sequence(hidden_vectors)
        # unsort the results at dim=1 and return
        hidden_vectors = hidden_vectors[:, unsort_idx]
        return hidden_vectors

    def encode_query(self, query, query_lens):
        query = query.permute(2, 0, 1)  # seq_len, batch, feature dim
        lens, ids = torch.sort(query_lens, descending=True)
        original_ids = [0] * lens.size(0)
        for i in range(len(ids)):
            original_ids[ids[i]] = i

        query_encoded = self.run_padded_sequence(ids, original_ids, lens,
                                                 query, self.query_lstm)
        query_encoded = query_encoded.permute(1, 2, 0)
        return query_encoded

    def forward(self, queries, keys, query_lens, mask=None, key_lens=None,
                keys_encoded=None, attn_prior=None):
        """Attention mechanism for flowtron parallel
        Unlike in Flowtron, we have no restrictions such as causality etc,
        since we only need this during training.

        Args:
            queries (torch.tensor): B x C x T1 tensor
                (probably going to be mel data)
            keys (torch.tensor): B x C2 x T2 tensor (text data)
            query_lens: lengths for sorting the queries in descending order
            mask (torch.tensor): uint8 binary mask for variable length entries
                (should be in the T2 domain)
        Output:
            attn (torch.tensor): B x 1 x T1 x T2 attention mask.
                Final dim T2 should sum to 1
        """
        keys_enc = self.key_proj(keys)  # B x n_attn_dims x T2

        # Beware can only do this since query_dim = attn_dim = n_mel_channels
        if self.use_query_proj:
            if self.align_query_enc_type == "inv_conv":
                queries_enc, log_det_W = self.query_proj(queries)
            elif self.align_query_enc_type == "3xconv":
                queries_enc = self.query_proj(queries)
                log_det_W = 0.0
            else:
                queries_enc, log_det_W = self.query_proj(queries)
        else:
            queries_enc, log_det_W = queries, 0.0

        # different ways of computing attn,
        # one is isotopic gaussians (per phoneme)
        # Simplistic Gaussian Isotopic Attention

        # B x n_attn_dims x T1 x T2
        attn = (queries_enc[:, :, :, None] - keys_enc[:, :, None]) ** 2
        # compute log likelihood from a gaussian
        attn = -0.0005 * attn.sum(1, keepdim=True)
        if attn_prior is not None:
            attn = self.log_softmax(attn) + torch.log(attn_prior[:, None]+1e-8)

        attn_logprob = attn.clone()

        if mask is not None:
            attn.data.masked_fill_(mask.permute(0, 2, 1).unsqueeze(2),
                                   -float("inf"))

        attn = self.softmax(attn)  # Softmax along T2
        return attn, attn_logprob