Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 12,407 Bytes
e1c08c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
# -*- coding: utf-8 -*-
""" Implement a pyTorch LSTM with hard sigmoid reccurent activation functions.
Adapted from the non-cuda variant of pyTorch LSTM at
https://github.com/pytorch/pytorch/blob/master/torch/nn/_functions/rnn.py
"""
from __future__ import print_function, division
import math
import torch
from torch.nn import Module
from torch.nn.parameter import Parameter
from torch.nn.utils.rnn import PackedSequence
import torch.nn.functional as F
class LSTMHardSigmoid(Module):
def __init__(self, input_size, hidden_size,
num_layers=1, bias=True, batch_first=False,
dropout=0, bidirectional=False):
super(LSTMHardSigmoid, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bias = bias
self.batch_first = batch_first
self.dropout = dropout
self.dropout_state = {}
self.bidirectional = bidirectional
num_directions = 2 if bidirectional else 1
gate_size = 4 * hidden_size
self._all_weights = []
for layer in range(num_layers):
for direction in range(num_directions):
layer_input_size = input_size if layer == 0 else hidden_size * num_directions
w_ih = Parameter(torch.Tensor(gate_size, layer_input_size))
w_hh = Parameter(torch.Tensor(gate_size, hidden_size))
b_ih = Parameter(torch.Tensor(gate_size))
b_hh = Parameter(torch.Tensor(gate_size))
layer_params = (w_ih, w_hh, b_ih, b_hh)
suffix = '_reverse' if direction == 1 else ''
param_names = ['weight_ih_l{}{}', 'weight_hh_l{}{}']
if bias:
param_names += ['bias_ih_l{}{}', 'bias_hh_l{}{}']
param_names = [x.format(layer, suffix) for x in param_names]
for name, param in zip(param_names, layer_params):
setattr(self, name, param)
self._all_weights.append(param_names)
self.flatten_parameters()
self.reset_parameters()
def flatten_parameters(self):
"""Resets parameter data pointer so that they can use faster code paths.
Right now, this is a no-op wince we don't use CUDA acceleration.
"""
self._data_ptrs = []
def _apply(self, fn):
ret = super(LSTMHardSigmoid, self)._apply(fn)
self.flatten_parameters()
return ret
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.hidden_size)
for weight in self.parameters():
weight.data.uniform_(-stdv, stdv)
def forward(self, input, hx=None):
is_packed = isinstance(input, PackedSequence)
if is_packed:
batch_sizes = input.batch_sizes
input = input.data
max_batch_size = batch_sizes[0]
else:
batch_sizes = None
max_batch_size = input.size(0) if self.batch_first else input.size(1)
if hx is None:
num_directions = 2 if self.bidirectional else 1
hx = torch.autograd.Variable(input.data.new(self.num_layers *
num_directions,
max_batch_size,
self.hidden_size).zero_(), requires_grad=False)
hx = (hx, hx)
has_flat_weights = list(p.data.data_ptr() for p in self.parameters()) == self._data_ptrs
if has_flat_weights:
first_data = next(self.parameters()).data
assert first_data.storage().size() == self._param_buf_size
flat_weight = first_data.new().set_(first_data.storage(), 0, torch.Size([self._param_buf_size]))
else:
flat_weight = None
func = AutogradRNN(
self.input_size,
self.hidden_size,
num_layers=self.num_layers,
batch_first=self.batch_first,
dropout=self.dropout,
train=self.training,
bidirectional=self.bidirectional,
batch_sizes=batch_sizes,
dropout_state=self.dropout_state,
flat_weight=flat_weight
)
output, hidden = func(input, self.all_weights, hx)
if is_packed:
output = PackedSequence(output, batch_sizes)
return output, hidden
def __repr__(self):
s = '{name}({input_size}, {hidden_size}'
if self.num_layers != 1:
s += ', num_layers={num_layers}'
if self.bias is not True:
s += ', bias={bias}'
if self.batch_first is not False:
s += ', batch_first={batch_first}'
if self.dropout != 0:
s += ', dropout={dropout}'
if self.bidirectional is not False:
s += ', bidirectional={bidirectional}'
s += ')'
return s.format(name=self.__class__.__name__, **self.__dict__)
def __setstate__(self, d):
super(LSTMHardSigmoid, self).__setstate__(d)
self.__dict__.setdefault('_data_ptrs', [])
if 'all_weights' in d:
self._all_weights = d['all_weights']
if isinstance(self._all_weights[0][0], str):
return
num_layers = self.num_layers
num_directions = 2 if self.bidirectional else 1
self._all_weights = []
for layer in range(num_layers):
for direction in range(num_directions):
suffix = '_reverse' if direction == 1 else ''
weights = ['weight_ih_l{}{}', 'weight_hh_l{}{}', 'bias_ih_l{}{}', 'bias_hh_l{}{}']
weights = [x.format(layer, suffix) for x in weights]
if self.bias:
self._all_weights += [weights]
else:
self._all_weights += [weights[:2]]
@property
def all_weights(self):
return [[getattr(self, weight) for weight in weights] for weights in self._all_weights]
def AutogradRNN(input_size, hidden_size, num_layers=1, batch_first=False,
dropout=0, train=True, bidirectional=False, batch_sizes=None,
dropout_state=None, flat_weight=None):
cell = LSTMCell
if batch_sizes is None:
rec_factory = Recurrent
else:
rec_factory = variable_recurrent_factory(batch_sizes)
if bidirectional:
layer = (rec_factory(cell), rec_factory(cell, reverse=True))
else:
layer = (rec_factory(cell),)
func = StackedRNN(layer,
num_layers,
True,
dropout=dropout,
train=train)
def forward(input, weight, hidden):
if batch_first and batch_sizes is None:
input = input.transpose(0, 1)
nexth, output = func(input, hidden, weight)
if batch_first and batch_sizes is None:
output = output.transpose(0, 1)
return output, nexth
return forward
def Recurrent(inner, reverse=False):
def forward(input, hidden, weight):
output = []
steps = range(input.size(0) - 1, -1, -1) if reverse else range(input.size(0))
for i in steps:
hidden = inner(input[i], hidden, *weight)
# hack to handle LSTM
output.append(hidden[0] if isinstance(hidden, tuple) else hidden)
if reverse:
output.reverse()
output = torch.cat(output, 0).view(input.size(0), *output[0].size())
return hidden, output
return forward
def variable_recurrent_factory(batch_sizes):
def fac(inner, reverse=False):
if reverse:
return VariableRecurrentReverse(batch_sizes, inner)
else:
return VariableRecurrent(batch_sizes, inner)
return fac
def VariableRecurrent(batch_sizes, inner):
def forward(input, hidden, weight):
output = []
input_offset = 0
last_batch_size = batch_sizes[0]
hiddens = []
flat_hidden = not isinstance(hidden, tuple)
if flat_hidden:
hidden = (hidden,)
for batch_size in batch_sizes:
step_input = input[input_offset:input_offset + batch_size]
input_offset += batch_size
dec = last_batch_size - batch_size
if dec > 0:
hiddens.append(tuple(h[-dec:] for h in hidden))
hidden = tuple(h[:-dec] for h in hidden)
last_batch_size = batch_size
if flat_hidden:
hidden = (inner(step_input, hidden[0], *weight),)
else:
hidden = inner(step_input, hidden, *weight)
output.append(hidden[0])
hiddens.append(hidden)
hiddens.reverse()
hidden = tuple(torch.cat(h, 0) for h in zip(*hiddens))
assert hidden[0].size(0) == batch_sizes[0]
if flat_hidden:
hidden = hidden[0]
output = torch.cat(output, 0)
return hidden, output
return forward
def VariableRecurrentReverse(batch_sizes, inner):
def forward(input, hidden, weight):
output = []
input_offset = input.size(0)
last_batch_size = batch_sizes[-1]
initial_hidden = hidden
flat_hidden = not isinstance(hidden, tuple)
if flat_hidden:
hidden = (hidden,)
initial_hidden = (initial_hidden,)
hidden = tuple(h[:batch_sizes[-1]] for h in hidden)
for batch_size in reversed(batch_sizes):
inc = batch_size - last_batch_size
if inc > 0:
hidden = tuple(torch.cat((h, ih[last_batch_size:batch_size]), 0)
for h, ih in zip(hidden, initial_hidden))
last_batch_size = batch_size
step_input = input[input_offset - batch_size:input_offset]
input_offset -= batch_size
if flat_hidden:
hidden = (inner(step_input, hidden[0], *weight),)
else:
hidden = inner(step_input, hidden, *weight)
output.append(hidden[0])
output.reverse()
output = torch.cat(output, 0)
if flat_hidden:
hidden = hidden[0]
return hidden, output
return forward
def StackedRNN(inners, num_layers, lstm=False, dropout=0, train=True):
num_directions = len(inners)
total_layers = num_layers * num_directions
def forward(input, hidden, weight):
assert(len(weight) == total_layers)
next_hidden = []
if lstm:
hidden = list(zip(*hidden))
for i in range(num_layers):
all_output = []
for j, inner in enumerate(inners):
l = i * num_directions + j
hy, output = inner(input, hidden[l], weight[l])
next_hidden.append(hy)
all_output.append(output)
input = torch.cat(all_output, input.dim() - 1)
if dropout != 0 and i < num_layers - 1:
input = F.dropout(input, p=dropout, training=train, inplace=False)
if lstm:
next_h, next_c = zip(*next_hidden)
next_hidden = (
torch.cat(next_h, 0).view(total_layers, *next_h[0].size()),
torch.cat(next_c, 0).view(total_layers, *next_c[0].size())
)
else:
next_hidden = torch.cat(next_hidden, 0).view(
total_layers, *next_hidden[0].size())
return next_hidden, input
return forward
def LSTMCell(input, hidden, w_ih, w_hh, b_ih=None, b_hh=None):
"""
A modified LSTM cell with hard sigmoid activation on the input, forget and output gates.
"""
hx, cx = hidden
gates = F.linear(input, w_ih, b_ih) + F.linear(hx, w_hh, b_hh)
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = hard_sigmoid(ingate)
forgetgate = hard_sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = hard_sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, cy
def hard_sigmoid(x):
"""
Computes element-wise hard sigmoid of x.
See e.g. https://github.com/Theano/Theano/blob/master/theano/tensor/nnet/sigm.py#L279
"""
x = (0.2 * x) + 0.5
x = F.threshold(-x, -1, -1)
x = F.threshold(-x, 0, 0)
return x
|