Spaces:
Sleeping
Sleeping
File size: 1,657 Bytes
d5b821a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
import torch
from transformers import pipeline
from gtts import gTTS
import tempfile
import os
from groq import Groq
# Load the Whisper model from Hugging Face
device = "cuda" if torch.cuda.is_available() else "cpu"
whisper_model = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
# Initialize Groq client
client = Groq(api_key="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")
# Function to handle the voice-to-voice conversation
def voice_to_voice_conversation(audio):
# Read and transcribe audio using Whisper
transcription = whisper_model(audio)["text"]
# Get response from Groq API using Llama 8b
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": transcription}],
model="llama3-8b-8192",
)
response_text = chat_completion.choices[0].message.content
# Convert text to speech using GTTS and save to a temporary file
tts = gTTS(response_text)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tts.save(tmp_file.name)
tmp_file_path = tmp_file.name
# Load the generated speech as an audio file for Gradio
return transcription, tmp_file_path
# Gradio Interface
interface = gr.Interface(
fn=voice_to_voice_conversation,
inputs=gr.Audio(type="filepath"),
outputs=[gr.Textbox(label="Transcription"), gr.Audio(label="Response Audio")],
title="Voice-to-Voice Chatbot",
description="Speak into the microphone, and the chatbot will respond with a generated voice message.",
live=False
)
# Launch the interface
interface.launch() |