File size: 20,215 Bytes
94bafa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import os
import copy
from typing import List, Dict
import zipfile
import json
import random
from typing import Tuple

import numpy as np
import PIL.Image
import torch
from tools import dnnlib
from omegaconf import DictConfig, OmegaConf

from tools.utils.layers import sample_frames

try:
    import pyspng
except ImportError:
    pyspng = None

#----------------------------------------------------------------------------

NUMPY_INTEGER_TYPES = [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64]
NUMPY_FLOAT_TYPES = [np.float16, np.float32, np.float64, np.single, np.double]

#----------------------------------------------------------------------------

class Dataset(torch.utils.data.Dataset):
    def __init__(self,
        name,                   # Name of the dataset.
        raw_shape,              # Shape of the raw image data (NCHW).
        max_size    = None,     # Artificially limit the size of the dataset. None = no limit. Applied before xflip.
        use_labels  = False,    # Enable conditioning labels? False = label dimension is zero.
        xflip       = False,    # Artificially double the size of the dataset via x-flips. Applied after max_size.
        random_seed = 0,        # Random seed to use when applying max_size.
    ):
        self._name = name
        self._raw_shape = list(raw_shape)
        self._use_labels = use_labels
        self._raw_labels = None
        self._label_shape = None

        # Apply max_size.
        self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64)
        if (max_size is not None) and (self._raw_idx.size > max_size):
            np.random.RandomState(random_seed).shuffle(self._raw_idx)
            self._raw_idx = np.sort(self._raw_idx[:max_size])

        # Apply xflip.
        self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8)
        if xflip:
            self._raw_idx = np.tile(self._raw_idx, 2)
            self._xflip = np.concatenate([self._xflip, np.ones_like(self._xflip)])

    @staticmethod
    def _file_ext(fname):
        return os.path.splitext(fname)[1].lower()

    def _get_raw_labels(self):
        if self._raw_labels is None:
            self._raw_labels = self._load_raw_labels() if self._use_labels else None
            if self._raw_labels is None:
                self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32)
            assert isinstance(self._raw_labels, np.ndarray)
            assert self._raw_labels.shape[0] == self._raw_shape[0]
            assert self._raw_labels.dtype in [np.float32, np.int64]
            if self._raw_labels.dtype == np.int64:
                assert np.all(self._raw_labels >= 0)
        return self._raw_labels

    def close(self): # to be overridden by subclass
        pass

    def _load_raw_image(self, raw_idx): # to be overridden by subclass
        raise NotImplementedError

    def _load_raw_labels(self): # to be overridden by subclass
        raise NotImplementedError

    def __getstate__(self):
        return dict(self.__dict__, _raw_labels=None)

    def __del__(self):
        try:
            self.close()
        except:
            pass

    def __len__(self):
        return self._raw_idx.size

    def __getitem__(self, idx):
        image = self._load_raw_image(self._raw_idx[idx])
        assert isinstance(image, np.ndarray)
        assert list(image.shape) == self.image_shape
        assert image.dtype == np.uint8
        if self._xflip[idx]:
            assert image.ndim == 3 # CHW
            image = image[:, :, ::-1]

        return {
            'image': image.copy(),
            'label': self.get_label(idx),
        }

    def get_label(self, idx):
        label = self._get_raw_labels()[self._raw_idx[idx]]
        if label.dtype == np.int64:
            onehot = np.zeros(self.label_shape, dtype=np.float32)
            onehot[label] = 1
            label = onehot
        return label.copy()

    def get_details(self, idx):
        d = dnnlib.EasyDict()
        d.raw_idx = int(self._raw_idx[idx])
        d.xflip = (int(self._xflip[idx]) != 0)
        d.raw_label = self._get_raw_labels()[d.raw_idx].copy()
        return d

    @property
    def name(self):
        return self._name

    @property
    def image_shape(self):
        return list(self._raw_shape[1:])

    @property
    def num_channels(self):
        assert len(self.image_shape) == 3 # CHW
        return self.image_shape[0]

    @property
    def resolution(self):
        assert len(self.image_shape) == 3 # CHW
        assert self.image_shape[1] == self.image_shape[2]
        return self.image_shape[1]

    @property
    def label_shape(self):
        if self._label_shape is None:
            raw_labels = self._get_raw_labels()
            if raw_labels.dtype == np.int64:
                self._label_shape = [int(np.max(raw_labels)) + 1]
            else:
                self._label_shape = raw_labels.shape[1:]
        return list(self._label_shape)

    @property
    def label_dim(self):
        assert len(self.label_shape) == 1, f"Labels must be 1-dimensional: {self.label_shape} to use `.label_dim`"
        return self.label_shape[0]

    @property
    def has_labels(self):
        return any(x != 0 for x in self.label_shape)

    @property
    def has_onehot_labels(self):
        return self._get_raw_labels().dtype == np.int64

#----------------------------------------------------------------------------

class ImageFolderDataset(Dataset):
    def __init__(self,
        path,                   # Path to directory or zip.
        resolution      = None, # Ensure specific resolution, None = highest available.
        **super_kwargs,         # Additional arguments for the Dataset base class.
    ):
        self._path = path
        self._zipfile = None

        if os.path.isdir(self._path):
            self._type = 'dir'
            self._all_fnames = {os.path.relpath(os.path.join(root, fname), start=self._path) for root, _dirs, files in os.walk(self._path) for fname in files}
        elif self._file_ext(self._path) == '.zip':
            self._type = 'zip'
            self._all_fnames = set(self._get_zipfile().namelist())
        else:
            raise IOError('Path must point to a directory or zip')

        PIL.Image.init()
        self._image_fnames = sorted(fname for fname in self._all_fnames if self._file_ext(fname) in PIL.Image.EXTENSION)
        if len(self._image_fnames) == 0:
            raise IOError('No image files found in the specified path')

        name = os.path.splitext(os.path.basename(self._path))[0]
        raw_shape = [len(self._image_fnames)] + list(self._load_raw_image(0).shape)
        if resolution is not None and (raw_shape[2] != resolution or raw_shape[3] != resolution):
            raise IOError(f'Image files do not match the specified resolution. Resolution is {resolution}, shape is {raw_shape}')
        super().__init__(name=name, raw_shape=raw_shape, **super_kwargs)

    def _get_zipfile(self):
        assert self._type == 'zip'
        if self._zipfile is None:
            self._zipfile = zipfile.ZipFile(self._path)
        return self._zipfile

    def _open_file(self, fname):
        if self._type == 'dir':
            return open(os.path.join(self._path, fname), 'rb')
        if self._type == 'zip':
            return self._get_zipfile().open(fname, 'r')
        return None

    def close(self):
        try:
            if self._zipfile is not None:
                self._zipfile.close()
        finally:
            self._zipfile = None

    def __getstate__(self):
        return dict(super().__getstate__(), _zipfile=None)

    def _load_raw_image(self, raw_idx):
        fname = self._image_fnames[raw_idx]

        with self._open_file(fname) as f:
            use_pyspng = pyspng is not None and self._file_ext(fname) == '.png'
            image = load_image_from_buffer(f, use_pyspng=use_pyspng)

        return image

    def _load_raw_labels(self):
        fname = 'dataset.json'
        labels_files = [f for f in self._all_fnames if f.endswith(fname)]
        if len(labels_files) == 0:
            return None
        assert len(labels_files) == 1, f"There can be only a single {fname} file"
        with self._open_file(labels_files[0]) as f:
            labels = json.load(f)['labels']
        if labels is None:
            return None
        labels = dict(labels)
        labels = [labels[remove_root(fname, self._name).replace('\\', '/')] for fname in self._image_fnames]
        labels = np.array(labels)

        if labels.dtype in NUMPY_INTEGER_TYPES:
            labels = labels.astype(np.int64)
        elif labels.dtype in NUMPY_FLOAT_TYPES:
            labels = labels.astype(np.float32)
        else:
            raise NotImplementedError(f"Unsupported label dtype: {labels.dtype}")

        return labels

#----------------------------------------------------------------------------

class VideoFramesFolderDataset(Dataset):
    def __init__(self,
        path,                                           # Path to directory or zip.
        cfg: DictConfig,                                # Config
        resolution=None,                                # Unused arg for backward compatibility
        load_n_consecutive: int=None,                   # Should we load first N frames for each video?
        load_n_consecutive_random_offset: bool=True,    # Should we use a random offset when loading consecutive frames?
        subsample_factor: int=1,                        # Sampling factor, i.e. decreasing the temporal resolution
        discard_short_videos: bool=False,               # Should we discard videos that are shorter than `load_n_consecutive`?
        **super_kwargs,                                 # Additional arguments for the Dataset base class.
    ):
        self.sampling_dict = OmegaConf.to_container(OmegaConf.create({**cfg.sampling})) if 'sampling' in cfg else None
        self.max_num_frames = cfg.max_num_frames
        self._path = path
        self._zipfile = None
        self.load_n_consecutive = load_n_consecutive
        self.load_n_consecutive_random_offset = load_n_consecutive_random_offset
        self.subsample_factor = subsample_factor
        print(subsample_factor)
        self.discard_short_videos = discard_short_videos

        if self.subsample_factor > 1 and self.load_n_consecutive is None:
            raise NotImplementedError("Can do subsampling only when loading consecutive frames.")

        listdir_full_paths = lambda d: sorted([os.path.join(d, x) for x in os.listdir(d)])
        name = os.path.splitext(os.path.basename(self._path))[0]

        if os.path.isdir(self._path):
            self._type = 'dir'
            # We assume that the depth is 2
            self._all_objects = {o for d in listdir_full_paths(self._path) for o in (([d] + listdir_full_paths(d)) if os.path.isdir(d) else [d])}
            self._all_objects = {os.path.relpath(o, start=os.path.dirname(self._path)) for o in {self._path}.union(self._all_objects)}
        elif self._file_ext(self._path) == '.zip':
            self._type = 'zip'
            self._all_objects = set(self._get_zipfile().namelist())
        else:
            raise IOError('Path must be either a directory or point to a zip archive')

        PIL.Image.init()
        self._video_dir2frames = {}
        objects = sorted([d for d in self._all_objects])
        root_path_depth = len(os.path.normpath(objects[0]).split(os.path.sep))
        curr_d = objects[1] # Root path is the first element

        for o in objects[1:]:
            curr_obj_depth = len(os.path.normpath(o).split(os.path.sep))

            if self._file_ext(o) in PIL.Image.EXTENSION:
                assert o.startswith(curr_d), f"Object {o} is out of sync. It should lie inside {curr_d}"
                assert curr_obj_depth == root_path_depth + 2, "Frame images should be inside directories"
                if not curr_d in self._video_dir2frames:
                    self._video_dir2frames[curr_d] = []
                self._video_dir2frames[curr_d].append(o)
            elif self._file_ext(o) == 'json':
                assert curr_obj_depth == root_path_depth + 1, "Classes info file should be inside the root dir"
                pass
            else:
                # We encountered a new directory
                assert curr_obj_depth == root_path_depth + 1, f"Video directories should be inside the root dir. {o} is not."
                if curr_d in self._video_dir2frames:
                    sorted_files = sorted(self._video_dir2frames[curr_d])
                    self._video_dir2frames[curr_d] = sorted_files
                curr_d = o

        if self.discard_short_videos:
            self._video_dir2frames = {d: fs for d, fs in self._video_dir2frames.items() if len(fs) >= self.load_n_consecutive * self.subsample_factor}

        self._video_idx2frames = [frames for frames in self._video_dir2frames.values()]

        if len(self._video_idx2frames) == 0:
            raise IOError('No videos found in the specified archive')

        raw_shape = [len(self._video_idx2frames)] + list(self._load_raw_frames(0, [0])[0][0].shape)

        super().__init__(name=name, raw_shape=raw_shape, **super_kwargs)

    def _get_zipfile(self):
        assert self._type == 'zip'
        if self._zipfile is None:
            self._zipfile = zipfile.ZipFile(self._path)
        return self._zipfile

    def _open_file(self, fname):
        if self._type == 'dir':
            return open(os.path.join(os.path.dirname(self._path), fname), 'rb')
        if self._type == 'zip':
            return self._get_zipfile().open(fname, 'r')
        return None

    def close(self):
        try:
            if self._zipfile is not None:
                self._zipfile.close()
        finally:
            self._zipfile = None

    def __getstate__(self):
        return dict(super().__getstate__(), _zipfile=None)

    def _load_raw_labels(self):
        """
        We leave the `dataset.json` file in the same format as in the original SG2-ADA repo:
        it's `labels` field is a hashmap of filename-label pairs.
        """
        fname = 'dataset.json'
        labels_files = [f for f in self._all_objects if f.endswith(fname)]
        if len(labels_files) == 0:
            return None
        assert len(labels_files) == 1, f"There can be only a single {fname} file"
        with self._open_file(labels_files[0]) as f:
            labels = json.load(f)['labels']
        if labels is None:
            return None

        labels = dict(labels)
        # The `dataset.json` file defines a label for each image and
        # For the video dataset, this is both inconvenient and redundant.
        # So let's redefine this
        video_labels = {}
        for filename, label in labels.items():
            dirname = os.path.dirname(filename)
            if dirname in video_labels:
                assert video_labels[dirname] == label
            else:
                video_labels[dirname] = label
        labels = video_labels
        labels = [labels[os.path.normpath(dname).split(os.path.sep)[-1]] for dname in self._video_dir2frames]
        labels = np.array(labels)

        if labels.dtype in NUMPY_INTEGER_TYPES:
            labels = labels.astype(np.int64)
        elif labels.dtype in NUMPY_FLOAT_TYPES:
            labels = labels.astype(np.float32)
        else:
            raise NotImplementedError(f"Unsupported label dtype: {labels.dtype}")

        return labels

    def __getitem__(self, idx: int) -> Dict:
        if self.load_n_consecutive:
            num_frames_available = len(self._video_idx2frames[self._raw_idx[idx]])
            assert num_frames_available - self.load_n_consecutive * self.subsample_factor >= 0, f"We have only {num_frames_available} frames available, cannot load {self.load_n_consecutive} frames."

            if self.load_n_consecutive_random_offset:
                random_offset = random.randint(0, num_frames_available - self.load_n_consecutive * self.subsample_factor + self.subsample_factor - 1)
            else:
                random_offset = 0
            frames_idx = np.arange(0, self.load_n_consecutive * self.subsample_factor, self.subsample_factor) + random_offset
        else:
            frames_idx = None

        frames, times = self._load_raw_frames(self._raw_idx[idx], frames_idx=frames_idx)

        assert isinstance(frames, np.ndarray)
        assert list(frames[0].shape) == self.image_shape
        assert frames.dtype == np.uint8
        assert len(frames) == len(times)

        if self._xflip[idx]:
            assert frames.ndim == 4 # TCHW
            frames = frames[:, :, :, ::-1]

        return {
            'image': frames.copy(),
            'label': self.get_label(idx),
            'times': times,
            'video_len': self.get_video_len(idx),
        }

    def get_video_len(self, idx: int) -> int:
        return min(self.max_num_frames, len(self._video_idx2frames[self._raw_idx[idx]]))

    def _load_raw_frames(self, raw_idx: int, frames_idx: List[int]=None) -> Tuple[np.ndarray, np.ndarray]:
        frame_paths = self._video_idx2frames[raw_idx]
        total_len = len(frame_paths)
        offset = 0
        images = []

        if frames_idx is None:
            assert not self.sampling_dict is None, f"The dataset was created without `cfg.sampling` config and cannot sample frames on its own."
            if total_len > self.max_num_frames:
                offset = random.randint(0, total_len - self.max_num_frames)
            frames_idx = sample_frames(self.sampling_dict, total_video_len=min(total_len, self.max_num_frames)) + offset
        else:
            frames_idx = np.array(frames_idx)

        for frame_idx in frames_idx:
            with self._open_file(frame_paths[frame_idx]) as f:
                images.append(load_image_from_buffer(f))

        return np.array(images), frames_idx - offset

    def compute_max_num_frames(self) -> int:
        return max(len(frames) for frames in self._video_idx2frames)

#----------------------------------------------------------------------------

def load_image_from_buffer(f, use_pyspng: bool=False) -> np.ndarray:
    if use_pyspng:
        image = pyspng.load(f.read())
    else:
        image = np.array(PIL.Image.open(f))
    if image.ndim == 2:
        image = image[:, :, np.newaxis] # HW => HWC
    image = image.transpose(2, 0, 1) # HWC => CHW

    return image

#----------------------------------------------------------------------------

def video_to_image_dataset_kwargs(video_dataset_kwargs: dnnlib.EasyDict) -> dnnlib.EasyDict:
    """Converts video dataset kwargs to image dataset kwargs"""
    return dnnlib.EasyDict(
        class_name='training.dataset.ImageFolderDataset',
        path=video_dataset_kwargs.path,
        use_labels=video_dataset_kwargs.use_labels,
        xflip=video_dataset_kwargs.xflip,
        resolution=video_dataset_kwargs.resolution,
        random_seed=video_dataset_kwargs.get('random_seed'),
        # Explicitly ignoring the max size, since we are now interested
        # in the number of images instead of the number of videos
        # max_size=video_dataset_kwargs.max_size,
    )

#----------------------------------------------------------------------------

def remove_root(fname: os.PathLike, root_name: os.PathLike):
    """`root_name` should NOT start with '/'"""
    if fname == root_name or fname == ('/' + root_name):
        return ''
    elif fname.startswith(root_name + '/'):
        return fname[len(root_name) + 1:]
    elif fname.startswith('/' + root_name + '/'):
        return fname[len(root_name) + 2:]
    else:
        return fname

#----------------------------------------------------------------------------