Spaces:
Running
Running
File size: 20,215 Bytes
94bafa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import copy
from typing import List, Dict
import zipfile
import json
import random
from typing import Tuple
import numpy as np
import PIL.Image
import torch
from tools import dnnlib
from omegaconf import DictConfig, OmegaConf
from tools.utils.layers import sample_frames
try:
import pyspng
except ImportError:
pyspng = None
#----------------------------------------------------------------------------
NUMPY_INTEGER_TYPES = [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64]
NUMPY_FLOAT_TYPES = [np.float16, np.float32, np.float64, np.single, np.double]
#----------------------------------------------------------------------------
class Dataset(torch.utils.data.Dataset):
def __init__(self,
name, # Name of the dataset.
raw_shape, # Shape of the raw image data (NCHW).
max_size = None, # Artificially limit the size of the dataset. None = no limit. Applied before xflip.
use_labels = False, # Enable conditioning labels? False = label dimension is zero.
xflip = False, # Artificially double the size of the dataset via x-flips. Applied after max_size.
random_seed = 0, # Random seed to use when applying max_size.
):
self._name = name
self._raw_shape = list(raw_shape)
self._use_labels = use_labels
self._raw_labels = None
self._label_shape = None
# Apply max_size.
self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64)
if (max_size is not None) and (self._raw_idx.size > max_size):
np.random.RandomState(random_seed).shuffle(self._raw_idx)
self._raw_idx = np.sort(self._raw_idx[:max_size])
# Apply xflip.
self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8)
if xflip:
self._raw_idx = np.tile(self._raw_idx, 2)
self._xflip = np.concatenate([self._xflip, np.ones_like(self._xflip)])
@staticmethod
def _file_ext(fname):
return os.path.splitext(fname)[1].lower()
def _get_raw_labels(self):
if self._raw_labels is None:
self._raw_labels = self._load_raw_labels() if self._use_labels else None
if self._raw_labels is None:
self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32)
assert isinstance(self._raw_labels, np.ndarray)
assert self._raw_labels.shape[0] == self._raw_shape[0]
assert self._raw_labels.dtype in [np.float32, np.int64]
if self._raw_labels.dtype == np.int64:
assert np.all(self._raw_labels >= 0)
return self._raw_labels
def close(self): # to be overridden by subclass
pass
def _load_raw_image(self, raw_idx): # to be overridden by subclass
raise NotImplementedError
def _load_raw_labels(self): # to be overridden by subclass
raise NotImplementedError
def __getstate__(self):
return dict(self.__dict__, _raw_labels=None)
def __del__(self):
try:
self.close()
except:
pass
def __len__(self):
return self._raw_idx.size
def __getitem__(self, idx):
image = self._load_raw_image(self._raw_idx[idx])
assert isinstance(image, np.ndarray)
assert list(image.shape) == self.image_shape
assert image.dtype == np.uint8
if self._xflip[idx]:
assert image.ndim == 3 # CHW
image = image[:, :, ::-1]
return {
'image': image.copy(),
'label': self.get_label(idx),
}
def get_label(self, idx):
label = self._get_raw_labels()[self._raw_idx[idx]]
if label.dtype == np.int64:
onehot = np.zeros(self.label_shape, dtype=np.float32)
onehot[label] = 1
label = onehot
return label.copy()
def get_details(self, idx):
d = dnnlib.EasyDict()
d.raw_idx = int(self._raw_idx[idx])
d.xflip = (int(self._xflip[idx]) != 0)
d.raw_label = self._get_raw_labels()[d.raw_idx].copy()
return d
@property
def name(self):
return self._name
@property
def image_shape(self):
return list(self._raw_shape[1:])
@property
def num_channels(self):
assert len(self.image_shape) == 3 # CHW
return self.image_shape[0]
@property
def resolution(self):
assert len(self.image_shape) == 3 # CHW
assert self.image_shape[1] == self.image_shape[2]
return self.image_shape[1]
@property
def label_shape(self):
if self._label_shape is None:
raw_labels = self._get_raw_labels()
if raw_labels.dtype == np.int64:
self._label_shape = [int(np.max(raw_labels)) + 1]
else:
self._label_shape = raw_labels.shape[1:]
return list(self._label_shape)
@property
def label_dim(self):
assert len(self.label_shape) == 1, f"Labels must be 1-dimensional: {self.label_shape} to use `.label_dim`"
return self.label_shape[0]
@property
def has_labels(self):
return any(x != 0 for x in self.label_shape)
@property
def has_onehot_labels(self):
return self._get_raw_labels().dtype == np.int64
#----------------------------------------------------------------------------
class ImageFolderDataset(Dataset):
def __init__(self,
path, # Path to directory or zip.
resolution = None, # Ensure specific resolution, None = highest available.
**super_kwargs, # Additional arguments for the Dataset base class.
):
self._path = path
self._zipfile = None
if os.path.isdir(self._path):
self._type = 'dir'
self._all_fnames = {os.path.relpath(os.path.join(root, fname), start=self._path) for root, _dirs, files in os.walk(self._path) for fname in files}
elif self._file_ext(self._path) == '.zip':
self._type = 'zip'
self._all_fnames = set(self._get_zipfile().namelist())
else:
raise IOError('Path must point to a directory or zip')
PIL.Image.init()
self._image_fnames = sorted(fname for fname in self._all_fnames if self._file_ext(fname) in PIL.Image.EXTENSION)
if len(self._image_fnames) == 0:
raise IOError('No image files found in the specified path')
name = os.path.splitext(os.path.basename(self._path))[0]
raw_shape = [len(self._image_fnames)] + list(self._load_raw_image(0).shape)
if resolution is not None and (raw_shape[2] != resolution or raw_shape[3] != resolution):
raise IOError(f'Image files do not match the specified resolution. Resolution is {resolution}, shape is {raw_shape}')
super().__init__(name=name, raw_shape=raw_shape, **super_kwargs)
def _get_zipfile(self):
assert self._type == 'zip'
if self._zipfile is None:
self._zipfile = zipfile.ZipFile(self._path)
return self._zipfile
def _open_file(self, fname):
if self._type == 'dir':
return open(os.path.join(self._path, fname), 'rb')
if self._type == 'zip':
return self._get_zipfile().open(fname, 'r')
return None
def close(self):
try:
if self._zipfile is not None:
self._zipfile.close()
finally:
self._zipfile = None
def __getstate__(self):
return dict(super().__getstate__(), _zipfile=None)
def _load_raw_image(self, raw_idx):
fname = self._image_fnames[raw_idx]
with self._open_file(fname) as f:
use_pyspng = pyspng is not None and self._file_ext(fname) == '.png'
image = load_image_from_buffer(f, use_pyspng=use_pyspng)
return image
def _load_raw_labels(self):
fname = 'dataset.json'
labels_files = [f for f in self._all_fnames if f.endswith(fname)]
if len(labels_files) == 0:
return None
assert len(labels_files) == 1, f"There can be only a single {fname} file"
with self._open_file(labels_files[0]) as f:
labels = json.load(f)['labels']
if labels is None:
return None
labels = dict(labels)
labels = [labels[remove_root(fname, self._name).replace('\\', '/')] for fname in self._image_fnames]
labels = np.array(labels)
if labels.dtype in NUMPY_INTEGER_TYPES:
labels = labels.astype(np.int64)
elif labels.dtype in NUMPY_FLOAT_TYPES:
labels = labels.astype(np.float32)
else:
raise NotImplementedError(f"Unsupported label dtype: {labels.dtype}")
return labels
#----------------------------------------------------------------------------
class VideoFramesFolderDataset(Dataset):
def __init__(self,
path, # Path to directory or zip.
cfg: DictConfig, # Config
resolution=None, # Unused arg for backward compatibility
load_n_consecutive: int=None, # Should we load first N frames for each video?
load_n_consecutive_random_offset: bool=True, # Should we use a random offset when loading consecutive frames?
subsample_factor: int=1, # Sampling factor, i.e. decreasing the temporal resolution
discard_short_videos: bool=False, # Should we discard videos that are shorter than `load_n_consecutive`?
**super_kwargs, # Additional arguments for the Dataset base class.
):
self.sampling_dict = OmegaConf.to_container(OmegaConf.create({**cfg.sampling})) if 'sampling' in cfg else None
self.max_num_frames = cfg.max_num_frames
self._path = path
self._zipfile = None
self.load_n_consecutive = load_n_consecutive
self.load_n_consecutive_random_offset = load_n_consecutive_random_offset
self.subsample_factor = subsample_factor
print(subsample_factor)
self.discard_short_videos = discard_short_videos
if self.subsample_factor > 1 and self.load_n_consecutive is None:
raise NotImplementedError("Can do subsampling only when loading consecutive frames.")
listdir_full_paths = lambda d: sorted([os.path.join(d, x) for x in os.listdir(d)])
name = os.path.splitext(os.path.basename(self._path))[0]
if os.path.isdir(self._path):
self._type = 'dir'
# We assume that the depth is 2
self._all_objects = {o for d in listdir_full_paths(self._path) for o in (([d] + listdir_full_paths(d)) if os.path.isdir(d) else [d])}
self._all_objects = {os.path.relpath(o, start=os.path.dirname(self._path)) for o in {self._path}.union(self._all_objects)}
elif self._file_ext(self._path) == '.zip':
self._type = 'zip'
self._all_objects = set(self._get_zipfile().namelist())
else:
raise IOError('Path must be either a directory or point to a zip archive')
PIL.Image.init()
self._video_dir2frames = {}
objects = sorted([d for d in self._all_objects])
root_path_depth = len(os.path.normpath(objects[0]).split(os.path.sep))
curr_d = objects[1] # Root path is the first element
for o in objects[1:]:
curr_obj_depth = len(os.path.normpath(o).split(os.path.sep))
if self._file_ext(o) in PIL.Image.EXTENSION:
assert o.startswith(curr_d), f"Object {o} is out of sync. It should lie inside {curr_d}"
assert curr_obj_depth == root_path_depth + 2, "Frame images should be inside directories"
if not curr_d in self._video_dir2frames:
self._video_dir2frames[curr_d] = []
self._video_dir2frames[curr_d].append(o)
elif self._file_ext(o) == 'json':
assert curr_obj_depth == root_path_depth + 1, "Classes info file should be inside the root dir"
pass
else:
# We encountered a new directory
assert curr_obj_depth == root_path_depth + 1, f"Video directories should be inside the root dir. {o} is not."
if curr_d in self._video_dir2frames:
sorted_files = sorted(self._video_dir2frames[curr_d])
self._video_dir2frames[curr_d] = sorted_files
curr_d = o
if self.discard_short_videos:
self._video_dir2frames = {d: fs for d, fs in self._video_dir2frames.items() if len(fs) >= self.load_n_consecutive * self.subsample_factor}
self._video_idx2frames = [frames for frames in self._video_dir2frames.values()]
if len(self._video_idx2frames) == 0:
raise IOError('No videos found in the specified archive')
raw_shape = [len(self._video_idx2frames)] + list(self._load_raw_frames(0, [0])[0][0].shape)
super().__init__(name=name, raw_shape=raw_shape, **super_kwargs)
def _get_zipfile(self):
assert self._type == 'zip'
if self._zipfile is None:
self._zipfile = zipfile.ZipFile(self._path)
return self._zipfile
def _open_file(self, fname):
if self._type == 'dir':
return open(os.path.join(os.path.dirname(self._path), fname), 'rb')
if self._type == 'zip':
return self._get_zipfile().open(fname, 'r')
return None
def close(self):
try:
if self._zipfile is not None:
self._zipfile.close()
finally:
self._zipfile = None
def __getstate__(self):
return dict(super().__getstate__(), _zipfile=None)
def _load_raw_labels(self):
"""
We leave the `dataset.json` file in the same format as in the original SG2-ADA repo:
it's `labels` field is a hashmap of filename-label pairs.
"""
fname = 'dataset.json'
labels_files = [f for f in self._all_objects if f.endswith(fname)]
if len(labels_files) == 0:
return None
assert len(labels_files) == 1, f"There can be only a single {fname} file"
with self._open_file(labels_files[0]) as f:
labels = json.load(f)['labels']
if labels is None:
return None
labels = dict(labels)
# The `dataset.json` file defines a label for each image and
# For the video dataset, this is both inconvenient and redundant.
# So let's redefine this
video_labels = {}
for filename, label in labels.items():
dirname = os.path.dirname(filename)
if dirname in video_labels:
assert video_labels[dirname] == label
else:
video_labels[dirname] = label
labels = video_labels
labels = [labels[os.path.normpath(dname).split(os.path.sep)[-1]] for dname in self._video_dir2frames]
labels = np.array(labels)
if labels.dtype in NUMPY_INTEGER_TYPES:
labels = labels.astype(np.int64)
elif labels.dtype in NUMPY_FLOAT_TYPES:
labels = labels.astype(np.float32)
else:
raise NotImplementedError(f"Unsupported label dtype: {labels.dtype}")
return labels
def __getitem__(self, idx: int) -> Dict:
if self.load_n_consecutive:
num_frames_available = len(self._video_idx2frames[self._raw_idx[idx]])
assert num_frames_available - self.load_n_consecutive * self.subsample_factor >= 0, f"We have only {num_frames_available} frames available, cannot load {self.load_n_consecutive} frames."
if self.load_n_consecutive_random_offset:
random_offset = random.randint(0, num_frames_available - self.load_n_consecutive * self.subsample_factor + self.subsample_factor - 1)
else:
random_offset = 0
frames_idx = np.arange(0, self.load_n_consecutive * self.subsample_factor, self.subsample_factor) + random_offset
else:
frames_idx = None
frames, times = self._load_raw_frames(self._raw_idx[idx], frames_idx=frames_idx)
assert isinstance(frames, np.ndarray)
assert list(frames[0].shape) == self.image_shape
assert frames.dtype == np.uint8
assert len(frames) == len(times)
if self._xflip[idx]:
assert frames.ndim == 4 # TCHW
frames = frames[:, :, :, ::-1]
return {
'image': frames.copy(),
'label': self.get_label(idx),
'times': times,
'video_len': self.get_video_len(idx),
}
def get_video_len(self, idx: int) -> int:
return min(self.max_num_frames, len(self._video_idx2frames[self._raw_idx[idx]]))
def _load_raw_frames(self, raw_idx: int, frames_idx: List[int]=None) -> Tuple[np.ndarray, np.ndarray]:
frame_paths = self._video_idx2frames[raw_idx]
total_len = len(frame_paths)
offset = 0
images = []
if frames_idx is None:
assert not self.sampling_dict is None, f"The dataset was created without `cfg.sampling` config and cannot sample frames on its own."
if total_len > self.max_num_frames:
offset = random.randint(0, total_len - self.max_num_frames)
frames_idx = sample_frames(self.sampling_dict, total_video_len=min(total_len, self.max_num_frames)) + offset
else:
frames_idx = np.array(frames_idx)
for frame_idx in frames_idx:
with self._open_file(frame_paths[frame_idx]) as f:
images.append(load_image_from_buffer(f))
return np.array(images), frames_idx - offset
def compute_max_num_frames(self) -> int:
return max(len(frames) for frames in self._video_idx2frames)
#----------------------------------------------------------------------------
def load_image_from_buffer(f, use_pyspng: bool=False) -> np.ndarray:
if use_pyspng:
image = pyspng.load(f.read())
else:
image = np.array(PIL.Image.open(f))
if image.ndim == 2:
image = image[:, :, np.newaxis] # HW => HWC
image = image.transpose(2, 0, 1) # HWC => CHW
return image
#----------------------------------------------------------------------------
def video_to_image_dataset_kwargs(video_dataset_kwargs: dnnlib.EasyDict) -> dnnlib.EasyDict:
"""Converts video dataset kwargs to image dataset kwargs"""
return dnnlib.EasyDict(
class_name='training.dataset.ImageFolderDataset',
path=video_dataset_kwargs.path,
use_labels=video_dataset_kwargs.use_labels,
xflip=video_dataset_kwargs.xflip,
resolution=video_dataset_kwargs.resolution,
random_seed=video_dataset_kwargs.get('random_seed'),
# Explicitly ignoring the max size, since we are now interested
# in the number of images instead of the number of videos
# max_size=video_dataset_kwargs.max_size,
)
#----------------------------------------------------------------------------
def remove_root(fname: os.PathLike, root_name: os.PathLike):
"""`root_name` should NOT start with '/'"""
if fname == root_name or fname == ('/' + root_name):
return ''
elif fname.startswith(root_name + '/'):
return fname[len(root_name) + 1:]
elif fname.startswith('/' + root_name + '/'):
return fname[len(root_name) + 2:]
else:
return fname
#----------------------------------------------------------------------------
|