File size: 14,970 Bytes
94bafa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import gradio as gr
import os
import torch
import argparse
import torchvision


from diffusers.schedulers import (DDIMScheduler, DDPMScheduler, PNDMScheduler, 
                                  EulerDiscreteScheduler, DPMSolverMultistepScheduler, 
                                  HeunDiscreteScheduler, EulerAncestralDiscreteScheduler,
                                  DEISMultistepScheduler, KDPM2AncestralDiscreteScheduler)
from diffusers.schedulers.scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from diffusers.models import AutoencoderKL, AutoencoderKLTemporalDecoder
from omegaconf import OmegaConf
from transformers import T5EncoderModel, T5Tokenizer

import os, sys
sys.path.append(os.path.split(sys.path[0])[0])
from sample.pipeline_latte import LattePipeline
from models import get_models
# import imageio
from torchvision.utils import save_image
import spaces

    
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/t2x/t2v_sample.yaml")
args = parser.parse_args()
args = OmegaConf.load(args.config)

torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"

transformer_model = get_models(args).to(device, dtype=torch.float16)
# state_dict = find_model(args.ckpt)
# msg, unexp = transformer_model.load_state_dict(state_dict, strict=False)

if args.enable_vae_temporal_decoder:
    vae = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float16).to(device)
else:
    vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae", torch_dtype=torch.float16).to(device)
tokenizer = T5Tokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
text_encoder = T5EncoderModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder", torch_dtype=torch.float16).to(device)

# set eval mode
transformer_model.eval()
vae.eval()
text_encoder.eval()

@spaces.GPU
def gen_video(text_input, sample_method, scfg_scale, seed, height, width, video_length, diffusion_step):
    torch.manual_seed(seed)
    if sample_method == 'DDIM':
        scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_path, 
                                                    subfolder="scheduler",
                                                    beta_start=args.beta_start, 
                                                    beta_end=args.beta_end, 
                                                    beta_schedule=args.beta_schedule,
                                                    variance_type=args.variance_type,
                                                    clip_sample=False)
    elif sample_method == 'EulerDiscrete':
        scheduler = EulerDiscreteScheduler.from_pretrained(args.pretrained_model_path, 
                                                        subfolder="scheduler",
                                                        beta_start=args.beta_start, 
                                                        beta_end=args.beta_end, 
                                                        beta_schedule=args.beta_schedule,
                                                        variance_type=args.variance_type)
    elif sample_method == 'DDPM':
        scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_path, 
                                                    subfolder="scheduler",
                                                    beta_start=args.beta_start, 
                                                    beta_end=args.beta_end, 
                                                    beta_schedule=args.beta_schedule,
                                                    variance_type=args.variance_type,
                                                    clip_sample=False)
    elif sample_method == 'DPMSolverMultistep':
        scheduler = DPMSolverMultistepScheduler.from_pretrained(args.pretrained_model_path, 
                                                    subfolder="scheduler",
                                                    beta_start=args.beta_start, 
                                                    beta_end=args.beta_end, 
                                                    beta_schedule=args.beta_schedule,
                                                    variance_type=args.variance_type)
    elif sample_method == 'DPMSolverSinglestep':
        scheduler = DPMSolverSinglestepScheduler.from_pretrained(args.pretrained_model_path, 
                                                    subfolder="scheduler",
                                                    beta_start=args.beta_start, 
                                                    beta_end=args.beta_end, 
                                                    beta_schedule=args.beta_schedule,
                                                    variance_type=args.variance_type)
    elif sample_method == 'PNDM':
        scheduler = PNDMScheduler.from_pretrained(args.pretrained_model_path, 
                                                    subfolder="scheduler",
                                                    beta_start=args.beta_start, 
                                                    beta_end=args.beta_end, 
                                                    beta_schedule=args.beta_schedule,
                                                    variance_type=args.variance_type)
    elif sample_method == 'HeunDiscrete':
        scheduler = HeunDiscreteScheduler.from_pretrained(args.pretrained_model_path, 
                                                    subfolder="scheduler",
                                                    beta_start=args.beta_start, 
                                                    beta_end=args.beta_end, 
                                                    beta_schedule=args.beta_schedule,
                                                    variance_type=args.variance_type)
    elif sample_method == 'EulerAncestralDiscrete':
        scheduler = EulerAncestralDiscreteScheduler.from_pretrained(args.pretrained_model_path, 
                                                    subfolder="scheduler",
                                                    beta_start=args.beta_start, 
                                                    beta_end=args.beta_end, 
                                                    beta_schedule=args.beta_schedule,
                                                    variance_type=args.variance_type)
    elif sample_method == 'DEISMultistep':
        scheduler = DEISMultistepScheduler.from_pretrained(args.pretrained_model_path, 
                                                    subfolder="scheduler",
                                                    beta_start=args.beta_start, 
                                                    beta_end=args.beta_end, 
                                                    beta_schedule=args.beta_schedule,
                                                    variance_type=args.variance_type)
    elif sample_method == 'KDPM2AncestralDiscrete':
        scheduler = KDPM2AncestralDiscreteScheduler.from_pretrained(args.pretrained_model_path, 
                                                    subfolder="scheduler",
                                                    beta_start=args.beta_start, 
                                                    beta_end=args.beta_end, 
                                                    beta_schedule=args.beta_schedule,
                                                    variance_type=args.variance_type)


    videogen_pipeline = LattePipeline(vae=vae, 
                                    text_encoder=text_encoder, 
                                    tokenizer=tokenizer, 
                                    scheduler=scheduler, 
                                    transformer=transformer_model).to(device)
    # videogen_pipeline.enable_xformers_memory_efficient_attention()

    videos = videogen_pipeline(text_input, 
                                video_length=video_length, 
                                height=height, 
                                width=width, 
                                num_inference_steps=diffusion_step,
                                guidance_scale=scfg_scale,
                                enable_temporal_attentions=args.enable_temporal_attentions,
                                num_images_per_prompt=1,
                                mask_feature=True,
                                enable_vae_temporal_decoder=args.enable_vae_temporal_decoder
                                ).video

    save_path = args.save_img_path + 'temp' + '.mp4'
    torchvision.io.write_video(save_path, videos[0], fps=8)
    return save_path


if not os.path.exists(args.save_img_path):
    os.makedirs(args.save_img_path)

intro = """
<div style="display: flex;align-items: center;justify-content: center">
    <h1 style="display: inline-block;margin-left: 10px;margin-top: 6px;font-weight: 500">Latte: Latent Diffusion Transformer for Video Generation</h1>
</div>
"""

with gr.Blocks() as demo:
    # gr.HTML(intro)
    # with gr.Accordion("README", open=False):
    #     gr.HTML(
    #         """
    #         <p style="font-size: 0.95rem;margin: 0rem;line-height: 1.2em;margin-top:1em;display: inline-block">
    #             <a href="https://maxin-cn.github.io/latte_project/" target="_blank">project page</a> | <a href="https://arxiv.org/abs/2401.03048" target="_blank">paper</a>
    #         </p>

    #         We will continue update Latte.
    #     """
    #     )
    gr.Markdown("<font color=red size=10><center>Latte: Latent Diffusion Transformer for Video Generation</center></font>")
    gr.Markdown(
        """<div style="display: flex;align-items: center;justify-content: center">
        <h2 style="display: inline-block;margin-left: 10px;margin-top: 6px;font-weight: 500">Latte supports both T2I and T2V, and will be continuously updated, so stay tuned!</h2></div>
        """
    )
    gr.Markdown(
        """<div style="display: flex;align-items: center;justify-content: center">
        [<a href="https://arxiv.org/abs/2401.03048">Arxiv Report</a>] | [<a href="https://maxin-cn.github.io/latte_project/">Project Page</a>] | [<a href="https://github.com/Vchitect/Latte">Github</a>]</div>
        """
    )


    with gr.Row():
        with gr.Column(visible=True) as input_raws:
            with gr.Row():
                with gr.Column(scale=1.0):
                    # text_input = gr.Textbox(show_label=True, interactive=True, label="Text prompt").style(container=False)
                    text_input = gr.Textbox(show_label=True, interactive=True, label="Prompt")
            # with gr.Row():
            #     with gr.Column(scale=0.5):
            #         image_input = gr.Image(show_label=True, interactive=True, label="Reference image").style(container=False)
            #     with gr.Column(scale=0.5):
            #         preframe_input = gr.Image(show_label=True, interactive=True, label="First frame").style(container=False)
            with gr.Row():
                with gr.Column(scale=0.5):
                    sample_method = gr.Dropdown(choices=["DDIM", "EulerDiscrete", "PNDM"], label="Sample Method", value="DDIM")
            # with gr.Row():
            #     with gr.Column(scale=1.0):
            #         video_length = gr.Slider(
            #             minimum=1,
            #             maximum=24,
            #             value=1,
            #             step=1,
            #             interactive=True,
            #             label="Video Length (1 for T2I and 16 for T2V)",
            #         )
                with gr.Column(scale=0.5):
                    video_length = gr.Dropdown(choices=[1, 16], label="Video Length (1 for T2I and 16 for T2V)", value=16)
            with gr.Row():
                with gr.Column(scale=1.0):
                    scfg_scale = gr.Slider(
                        minimum=1,
                        maximum=50,
                        value=7.5,
                        step=0.1,
                        interactive=True,
                        label="Guidence Scale",
                    )
            with gr.Row():
                with gr.Column(scale=1.0):
                    seed = gr.Slider(
                        minimum=1,
                        maximum=2147483647,
                        value=100,
                        step=1,
                        interactive=True,
                        label="Seed",
                    )
            with gr.Row():
                with gr.Column(scale=0.5):
                    height = gr.Slider(
                        minimum=256,
                        maximum=768,
                        value=512,
                        step=16,
                        interactive=False,
                        label="Height",
                    )
            # with gr.Row():
                with gr.Column(scale=0.5):
                    width = gr.Slider(
                        minimum=256,
                        maximum=768,
                        value=512,
                        step=16,
                        interactive=False,
                        label="Width",
                    )
            with gr.Row():
                with gr.Column(scale=1.0):
                    diffusion_step = gr.Slider(
                        minimum=20,
                        maximum=250,
                        value=50,
                        step=1,
                        interactive=True,
                        label="Sampling Step",
                    )

                         
        with gr.Column(scale=0.6, visible=True) as video_upload:
        # with gr.Column(visible=True) as video_upload:
            output = gr.Video(interactive=False, include_audio=True, elem_id="输出的视频") #.style(height=360)
            # with gr.Column(elem_id="image", scale=0.5) as img_part:
            #     with gr.Tab("Video", elem_id='video_tab'):
                    
            #     with gr.Tab("Image", elem_id='image_tab'):
            #         up_image = gr.Image(type="pil", interactive=True, elem_id="image_upload").style(height=360)
            # upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
            # clear = gr.Button("Restart")

            with gr.Row():
                with gr.Column(scale=1.0, min_width=0):
                    run = gr.Button("💭Run")
                # with gr.Column(scale=0.5, min_width=0):
                #     clear = gr.Button("🔄Clear️")
                    
    run.click(gen_video, [text_input, sample_method, scfg_scale, seed, height, width, video_length, diffusion_step], [output])
    
demo.launch(debug=False, share=True)

# demo.launch(server_name="0.0.0.0", server_port=10034, enable_queue=True)