Spaces:
Runtime error
Runtime error
File size: 17,423 Bytes
9d2fc55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
import os
import cv2
import numpy as np
import psutil
from roop.ProcessOptions import ProcessOptions
from roop.face_util import get_first_face, get_all_faces, rotate_image_180
from roop.utilities import compute_cosine_distance, get_device, str_to_class
from typing import Any, List, Callable
from roop.typing import Frame
from concurrent.futures import ThreadPoolExecutor, as_completed
from threading import Thread, Lock
from queue import Queue
from tqdm import tqdm
from roop.ffmpeg_writer import FFMPEG_VideoWriter
import roop.globals
def create_queue(temp_frame_paths: List[str]) -> Queue[str]:
queue: Queue[str] = Queue()
for frame_path in temp_frame_paths:
queue.put(frame_path)
return queue
def pick_queue(queue: Queue[str], queue_per_future: int) -> List[str]:
queues = []
for _ in range(queue_per_future):
if not queue.empty():
queues.append(queue.get())
return queues
class ProcessMgr():
input_face_datas = []
target_face_datas = []
processors = []
options : ProcessOptions = None
num_threads = 1
current_index = 0
processing_threads = 1
buffer_wait_time = 0.1
lock = Lock()
frames_queue = None
processed_queue = None
videowriter= None
progress_gradio = None
total_frames = 0
plugins = {
'faceswap' : 'FaceSwapInsightFace',
'mask_clip2seg' : 'Mask_Clip2Seg',
'codeformer' : 'Enhance_CodeFormer',
'gfpgan' : 'Enhance_GFPGAN',
'dmdnet' : 'Enhance_DMDNet',
'gpen' : 'Enhance_GPEN',
}
def __init__(self, progress):
if progress is not None:
self.progress_gradio = progress
def initialize(self, input_faces, target_faces, options):
self.input_face_datas = input_faces
self.target_face_datas = target_faces
self.options = options
processornames = options.processors.split(",")
devicename = get_device()
if len(self.processors) < 1:
for pn in processornames:
classname = self.plugins[pn]
module = 'roop.processors.' + classname
p = str_to_class(module, classname)
p.Initialize(devicename)
self.processors.append(p)
else:
for i in range(len(self.processors) -1, -1, -1):
if not self.processors[i].processorname in processornames:
self.processors[i].Release()
del self.processors[i]
for i,pn in enumerate(processornames):
if i >= len(self.processors) or self.processors[i].processorname != pn:
p = None
classname = self.plugins[pn]
module = 'roop.processors.' + classname
p = str_to_class(module, classname)
p.Initialize(devicename)
if p is not None:
self.processors.insert(i, p)
def run_batch(self, source_files, target_files, threads:int = 1):
progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
self.total_frames = len(source_files)
self.num_threads = threads
with tqdm(total=self.total_frames, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
with ThreadPoolExecutor(max_workers=threads) as executor:
futures = []
queue = create_queue(source_files)
queue_per_future = max(len(source_files) // threads, 1)
while not queue.empty():
future = executor.submit(self.process_frames, source_files, target_files, pick_queue(queue, queue_per_future), lambda: self.update_progress(progress))
futures.append(future)
for future in as_completed(futures):
future.result()
def process_frames(self, source_files: List[str], target_files: List[str], current_files, update: Callable[[], None]) -> None:
for f in current_files:
if not roop.globals.processing:
return
temp_frame = cv2.imread(f)
if temp_frame is not None:
resimg = self.process_frame(temp_frame)
if resimg is not None:
i = source_files.index(f)
cv2.imwrite(target_files[i], resimg)
if update:
update()
def read_frames_thread(self, cap, frame_start, frame_end, num_threads):
num_frame = 0
total_num = frame_end - frame_start
if frame_start > 0:
cap.set(cv2.CAP_PROP_POS_FRAMES,frame_start)
while True and roop.globals.processing:
ret, frame = cap.read()
if not ret:
break
self.frames_queue[num_frame % num_threads].put(frame, block=True)
num_frame += 1
if num_frame == total_num:
break
for i in range(num_threads):
self.frames_queue[i].put(None)
def process_videoframes(self, threadindex, progress) -> None:
while True:
frame = self.frames_queue[threadindex].get()
if frame is None:
self.processing_threads -= 1
self.processed_queue[threadindex].put((False, None))
return
else:
resimg = self.process_frame(frame)
self.processed_queue[threadindex].put((True, resimg))
del frame
progress()
def write_frames_thread(self):
nextindex = 0
num_producers = self.num_threads
while True:
process, frame = self.processed_queue[nextindex % self.num_threads].get()
nextindex += 1
if frame is not None:
self.videowriter.write_frame(frame)
del frame
elif process == False:
num_producers -= 1
if num_producers < 1:
return
def run_batch_inmem(self, source_video, target_video, frame_start, frame_end, fps, threads:int = 1, skip_audio=False):
cap = cv2.VideoCapture(source_video)
# frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_count = (frame_end - frame_start) + 1
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
self.total_frames = frame_count
self.num_threads = threads
self.processing_threads = self.num_threads
self.frames_queue = []
self.processed_queue = []
for _ in range(threads):
self.frames_queue.append(Queue(1))
self.processed_queue.append(Queue(1))
self.videowriter = FFMPEG_VideoWriter(target_video, (width, height), fps, codec=roop.globals.video_encoder, crf=roop.globals.video_quality, audiofile=None)
readthread = Thread(target=self.read_frames_thread, args=(cap, frame_start, frame_end, threads))
readthread.start()
writethread = Thread(target=self.write_frames_thread)
writethread.start()
progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
with tqdm(total=self.total_frames, desc='Processing', unit='frames', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
with ThreadPoolExecutor(thread_name_prefix='swap_proc', max_workers=self.num_threads) as executor:
futures = []
for threadindex in range(threads):
future = executor.submit(self.process_videoframes, threadindex, lambda: self.update_progress(progress))
futures.append(future)
for future in as_completed(futures):
future.result()
# wait for the task to complete
readthread.join()
writethread.join()
cap.release()
self.videowriter.close()
self.frames_queue.clear()
self.processed_queue.clear()
def update_progress(self, progress: Any = None) -> None:
process = psutil.Process(os.getpid())
memory_usage = process.memory_info().rss / 1024 / 1024 / 1024
msg = 'memory_usage: ' + '{:.2f}'.format(memory_usage).zfill(5) + f' GB execution_threads {self.num_threads}'
progress.set_postfix({
'memory_usage': '{:.2f}'.format(memory_usage).zfill(5) + 'GB',
'execution_threads': self.num_threads
})
progress.update(1)
self.progress_gradio((progress.n, self.total_frames), desc='Processing', total=self.total_frames, unit='frames')
def on_no_face_action(self, frame:Frame):
if roop.globals.no_face_action == 0:
return None, frame
elif roop.globals.no_face_action == 2:
return None, None
faces = get_all_faces(frame)
if faces is not None:
return faces, frame
return None, frame
def process_frame(self, frame:Frame):
if len(self.input_face_datas) < 1:
return frame
temp_frame = frame.copy()
num_swapped, temp_frame = self.swap_faces(frame, temp_frame)
if num_swapped > 0:
return temp_frame
if roop.globals.no_face_action == 0:
return frame
if roop.globals.no_face_action == 2:
return None
else:
copyframe = frame.copy()
copyframe = rotate_image_180(copyframe)
temp_frame = copyframe.copy()
num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
if num_swapped == 0:
return frame
temp_frame = rotate_image_180(temp_frame)
return temp_frame
def swap_faces(self, frame, temp_frame):
num_faces_found = 0
if self.options.swap_mode == "first":
face = get_first_face(frame)
if face is None:
return num_faces_found, frame
num_faces_found += 1
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
else:
faces = get_all_faces(frame)
if faces is None:
return num_faces_found, frame
if self.options.swap_mode == "all":
for face in faces:
num_faces_found += 1
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
del face
elif self.options.swap_mode == "selected":
for i,tf in enumerate(self.target_face_datas):
for face in faces:
if compute_cosine_distance(tf.embedding, face.embedding) <= self.options.face_distance_threshold:
if i < len(self.input_face_datas):
temp_frame = self.process_face(i, face, temp_frame)
num_faces_found += 1
break
del face
elif self.options.swap_mode == "all_female" or self.options.swap_mode == "all_male":
gender = 'F' if self.options.swap_mode == "all_female" else 'M'
for face in faces:
if face.sex == gender:
num_faces_found += 1
temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
del face
if num_faces_found == 0:
return num_faces_found, frame
maskprocessor = next((x for x in self.processors if x.processorname == 'clip2seg'), None)
if maskprocessor is not None:
temp_frame = self.process_mask(maskprocessor, frame, temp_frame)
return num_faces_found, temp_frame
def process_face(self,face_index, target_face, frame:Frame):
enhanced_frame = None
inputface = self.input_face_datas[face_index].faces[0]
for p in self.processors:
if p.type == 'swap':
fake_frame = p.Run(inputface, target_face, frame)
scale_factor = 0.0
elif p.type == 'mask':
continue
else:
enhanced_frame, scale_factor = p.Run(self.input_face_datas[face_index], target_face, fake_frame)
upscale = 512
orig_width = fake_frame.shape[1]
fake_frame = cv2.resize(fake_frame, (upscale, upscale), cv2.INTER_CUBIC)
mask_offsets = inputface.mask_offsets
if enhanced_frame is None:
scale_factor = int(upscale / orig_width)
result = self.paste_upscale(fake_frame, fake_frame, target_face.matrix, frame, scale_factor, mask_offsets)
else:
result = self.paste_upscale(fake_frame, enhanced_frame, target_face.matrix, frame, scale_factor, mask_offsets)
return result
def cutout(self, frame:Frame, start_x, start_y, end_x, end_y):
if start_x < 0:
start_x = 0
if start_y < 0:
start_y = 0
if end_x > frame.shape[1]:
end_x = frame.shape[1]
if end_y > frame.shape[0]:
end_y = frame.shape[0]
return frame[start_y:end_y, start_x:end_x], start_x, start_y, end_x, end_y
# Paste back adapted from here
# https://github.com/fAIseh00d/refacer/blob/main/refacer.py
# which is revised insightface paste back code
def paste_upscale(self, fake_face, upsk_face, M, target_img, scale_factor, mask_offsets):
M_scale = M * scale_factor
IM = cv2.invertAffineTransform(M_scale)
face_matte = np.full((target_img.shape[0],target_img.shape[1]), 255, dtype=np.uint8)
##Generate white square sized as a upsk_face
img_matte = np.full((upsk_face.shape[0],upsk_face.shape[1]), 255, dtype=np.uint8)
if mask_offsets[0] > 0:
img_matte[:mask_offsets[0],:] = 0
if mask_offsets[1] > 0:
img_matte[-mask_offsets[1]:,:] = 0
##Transform white square back to target_img
img_matte = cv2.warpAffine(img_matte, IM, (target_img.shape[1], target_img.shape[0]), flags=cv2.INTER_NEAREST, borderValue=0.0)
##Blacken the edges of face_matte by 1 pixels (so the mask in not expanded on the image edges)
img_matte[:1,:] = img_matte[-1:,:] = img_matte[:,:1] = img_matte[:,-1:] = 0
#Detect the affine transformed white area
mask_h_inds, mask_w_inds = np.where(img_matte==255)
#Calculate the size (and diagonal size) of transformed white area width and height boundaries
mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
mask_size = int(np.sqrt(mask_h*mask_w))
#Calculate the kernel size for eroding img_matte by kernel (insightface empirical guess for best size was max(mask_size//10,10))
# k = max(mask_size//12, 8)
k = max(mask_size//10, 10)
kernel = np.ones((k,k),np.uint8)
img_matte = cv2.erode(img_matte,kernel,iterations = 1)
#Calculate the kernel size for blurring img_matte by blur_size (insightface empirical guess for best size was max(mask_size//20, 5))
# k = max(mask_size//24, 4)
k = max(mask_size//20, 5)
kernel_size = (k, k)
blur_size = tuple(2*i+1 for i in kernel_size)
img_matte = cv2.GaussianBlur(img_matte, blur_size, 0)
#Normalize images to float values and reshape
img_matte = img_matte.astype(np.float32)/255
face_matte = face_matte.astype(np.float32)/255
img_matte = np.minimum(face_matte, img_matte)
img_matte = np.reshape(img_matte, [img_matte.shape[0],img_matte.shape[1],1])
##Transform upcaled face back to target_img
paste_face = cv2.warpAffine(upsk_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
if upsk_face is not fake_face:
fake_face = cv2.warpAffine(fake_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
paste_face = cv2.addWeighted(paste_face, self.options.blend_ratio, fake_face, 1.0 - self.options.blend_ratio, 0)
##Re-assemble image
paste_face = img_matte * paste_face
paste_face = paste_face + (1-img_matte) * target_img.astype(np.float32)
del img_matte
del face_matte
del upsk_face
del fake_face
return paste_face.astype(np.uint8)
def process_mask(self, processor, frame:Frame, target:Frame):
img_mask = processor.Run(frame, self.options.masking_text)
img_mask = cv2.resize(img_mask, (target.shape[1], target.shape[0]))
img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])
target = target.astype(np.float32)
result = (1-img_mask) * target
result += img_mask * frame.astype(np.float32)
return np.uint8(result)
def unload_models():
pass
def release_resources(self):
for p in self.processors:
p.Release()
self.processors.clear()
|