File size: 45,183 Bytes
9120f67
9454822
9120f67
98d76bd
 
 
f6923bc
9120f67
 
 
 
 
 
 
 
 
 
 
 
 
98d76bd
 
e49dc64
 
 
 
9120f67
 
f6923bc
 
9120f67
 
5bb1aa7
9120f67
 
944fcc4
9120f67
 
 
 
 
 
 
5bb1aa7
9120f67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6923bc
e49dc64
9120f67
e49dc64
9120f67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c990967
9120f67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bb1aa7
9120f67
 
263ec9b
9120f67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce580ca
9120f67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e49dc64
9120f67
e49dc64
9120f67
5bb1aa7
 
 
 
9120f67
5bb1aa7
 
9120f67
5bb1aa7
 
 
 
 
 
 
 
 
9120f67
5bb1aa7
9120f67
5bb1aa7
 
9120f67
5bb1aa7
9120f67
 
5bb1aa7
df172c4
 
02bf538
5bb1aa7
ce580ca
df172c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e49dc64
 
459f450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e49dc64
5bb1aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9120f67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bb1aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e49dc64
 
 
 
 
 
ce580ca
e49dc64
 
 
f6923bc
e49dc64
9120f67
f6923bc
 
 
9120f67
f6923bc
9120f67
 
e49dc64
 
 
9120f67
 
e49dc64
 
9120f67
e49dc64
 
ce580ca
 
 
e49dc64
 
ce580ca
e49dc64
9120f67
 
 
ce580ca
 
 
 
e49dc64
ce580ca
 
 
9120f67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e49dc64
9120f67
e49dc64
f6923bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e49dc64
9454822
1298db9
73f83b1
f6923bc
 
4cabc00
f6923bc
 
73f83b1
944fcc4
 
 
f6923bc
944fcc4
 
 
 
 
 
f6923bc
944fcc4
d5166a8
73f83b1
 
f6923bc
944fcc4
 
f6923bc
 
f8fc8c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bb1aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8fc8c8
 
b33cb3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
944fcc4
 
 
 
f6923bc
 
 
 
944fcc4
 
 
 
 
 
 
 
b33cb3c
f6923bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b33cb3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
944fcc4
 
b33cb3c
 
944fcc4
 
b33cb3c
 
944fcc4
 
b33cb3c
 
944fcc4
 
b33cb3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56274ac
f6923bc
 
b33cb3c
 
 
 
 
 
 
 
 
 
f6923bc
b33cb3c
 
 
 
944fcc4
 
 
 
b33cb3c
f6923bc
 
a43a340
f6923bc
b33cb3c
944fcc4
f6923bc
 
b33cb3c
f6923bc
 
 
 
 
 
 
b33cb3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8fc8c8
f6e71bf
5bb1aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73f83b1
4cabc00
73f83b1
 
 
1298db9
4dac01b
9120f67
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
# Standard imports first
import os
import torch
import logging
from datetime import datetime
from huggingface_hub import login
from dotenv import load_dotenv
from datasets import load_dataset, Dataset
from transformers import (
    AutoTokenizer, 
    AutoModelForCausalLM, 
    TrainingArguments, 
    Trainer,
    BitsAndBytesConfig
)
from peft import (
    LoraConfig,
    get_peft_model,
    prepare_model_for_kbit_training
)
from tqdm.auto import tqdm

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class SecretsManager:
    """Handles authentication and secrets management"""
    
    @staticmethod
    def setup_credentials():
        """Setup all required credentials"""
        try:
            # Load environment variables
            load_dotenv()
            
            # Get credentials
            credentials = {
                'KAGGLE_USERNAME': os.getenv('KAGGLE_USERNAME'),
                'KAGGLE_KEY': os.getenv('KAGGLE_KEY'),
                'HF_TOKEN': os.getenv('HF_TOKEN'),
                'WANDB_KEY': os.getenv('WANDB_KEY')
            }
            
            # Validate credentials
            missing_creds = [k for k, v in credentials.items() if not v]
            if missing_creds:
                logger.warning(f"Missing credentials: {', '.join(missing_creds)}")
            
            # Setup Hugging Face authentication
            if credentials['HF_TOKEN']:
                login(token=credentials['HF_TOKEN'])
                logger.info("Successfully logged in to Hugging Face")
# Setup Kaggle credentials if available
            if credentials['KAGGLE_USERNAME'] and credentials['KAGGLE_KEY']:
                os.environ['KAGGLE_USERNAME'] = credentials['KAGGLE_USERNAME']
                os.environ['KAGGLE_KEY'] = credentials['KAGGLE_KEY']
            
            # Setup wandb if available
            if credentials['WANDB_KEY']:
                os.environ['WANDB_API_KEY'] = credentials['WANDB_KEY']
            
            return credentials
            
        except Exception as e:
            logger.error(f"Error setting up credentials: {e}")
            raise
class ModelTrainer:
    """Handles model training pipeline"""
    
    def __init__(self):
        # Set memory optimization environment variables
        os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:64,garbage_collection_threshold:0.8,expandable_segments:True'
        os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
        
        # Initialize attributes
        self.model = None
        self.tokenizer = None
        self.dataset = None
        self.processed_dataset = None
        self.chunk_size = 300
        self.chunk_overlap = 100
        self.num_relevant_chunks = 3
        self.vector_store = None
        self.embeddings = None
        self.last_interaction_time = time.time()  # Add this
        self.interaction_cooldown = 1.0  # Add this
        
        # Setup GPU preferences
        torch.backends.cuda.matmul.allow_tf32 = False
        torch.backends.cudnn.allow_tf32 = False

    def prepare_initial_datasets(batch_size=8):
        print("Loading datasets with memory-optimized batch processing...")
        
    def process_medqa_batch(examples):
        results = []
        inputs = examples['input']
        instructions = examples['instruction']
        outputs = examples['output']
        
        for inp, inst, out in zip(inputs, instructions, outputs):
            results.append({
                "input": f"{inp} {inst}",
                "output": out
            })
        return results

    def process_meddia_batch(examples):
        results = []
        inputs = examples['input']
        outputs = examples['output']
        
        for inp, out in zip(inputs, outputs):
            results.append({
                "input": inp,
                "output": out
            })
        return results

    def process_persona_batch(examples):
        results = []
        personalities = examples['personality']
        utterances = examples['utterances']
        
        for pers, utts in zip(personalities, utterances):
            try:
                # Process personality list
                personality = ' '.join([
                    p for p in pers 
                    if isinstance(p, str)
                ])
                
                # Process utterances
                if utts and len(utts) > 0:
                    utterance = utts[0]
                    history = []
                    
                    # Process history
                    if 'history' in utterance and utterance['history']:
                        history = [
                            h for h in utterance['history']
                            if isinstance(h, str)
                        ]
                    
                    history_text = ' '.join(history)
                    
                    # Get candidate response
                    candidate = utterance.get('candidates', [''])[0] if utterance.get('candidates') else ''
                    
                    if personality or history_text:
                        results.append({
                            "input": f"{personality} {history_text}".strip(),
                            "output": candidate
                        })
            except Exception as e:
                print(f"Error processing persona batch item: {e}")
                continue
            
        return results
    try:
       Load and process each dataset separately
    print("Processing MedQA dataset...")
    medqa = load_dataset("medalpaca/medical_meadow_medqa", split="train[:500]")
    medqa_processed = []
    
    for i in tqdm(range(0, len(medqa), batch_size), desc="Processing MedQA"):
        batch = medqa[i:i + batch_size]
        medqa_processed.extend(process_medqa_batch(batch))
        if i % (batch_size * 5) == 0:
            torch.cuda.empty_cache()
    
    print("Processing MedDiagnosis dataset...")
    meddia = load_dataset("wasiqnauman/medical-diagnosis-synthetic", split="train[:500]")
    meddia_processed = []
    
    for i in tqdm(range(0, len(meddia), batch_size), desc="Processing MedDiagnosis"):
        batch = meddia[i:i + batch_size]
        meddia_processed.extend(process_meddia_batch(batch))
        if i % (batch_size * 5) == 0:
            torch.cuda.empty_cache()
    
    print("Processing Persona-Chat dataset...")
    persona = load_dataset("AlekseyKorshuk/persona-chat", split="train[:500]")
    persona_processed = []
    
    for i in tqdm(range(0, len(persona), batch_size), desc="Processing Persona-Chat"):
        batch = persona[i:i + batch_size]
        persona_processed.extend(process_persona_batch(batch))
        if i % (batch_size * 5) == 0:
            torch.cuda.empty_cache()
    
    torch.cuda.empty_cache()
    
    print("Creating final dataset...")
    all_processed = persona_processed + medqa_processed + meddia_processed
    
    valid_data = {
        "input": [],
        "output": []
    }
    
    for item in all_processed:
        if item["input"].strip() and item["output"].strip():
            valid_data["input"].append(item["input"])
            valid_data["output"].append(item["output"])
    
    final_dataset = Dataset.from_dict(valid_data)
    
    print(f"Final dataset size: {len(final_dataset)}")
    return final_dataset

    def prepare_dataset(dataset, tokenizer, max_length=256, batch_size=4):
        def tokenize_batch(examples):
            formatted_texts = []
            
            for i in range(0, len(examples['input']), batch_size):
                sub_batch_inputs = examples['input'][i:i + batch_size]
                sub_batch_outputs = examples['output'][i:i + batch_size]
                
                for input_text, output_text in zip(sub_batch_inputs, sub_batch_outputs):
                    try:
                        formatted_text = f"""<start_of_turn>user
    {input_text}
    <end_of_turn>
    <start_of_turn>assistant
    {output_text}
    <end_of_turn>"""
                        formatted_texts.append(formatted_text)
                    except Exception as e:
                        print(f"Error formatting text: {e}")
                        continue
            
            tokenized = tokenizer(
                formatted_texts,
                padding="max_length",
                truncation=True,
                max_length=max_length,
                return_tensors=None
            )
            
            tokenized["labels"] = tokenized["input_ids"].copy()
            return tokenized
        
        print(f"Tokenizing dataset in small batches (size={batch_size})...")
        tokenized_dataset = dataset.map(
            tokenize_batch,
            batched=True,
            batch_size=batch_size,
            remove_columns=dataset.column_names,
            desc="Tokenizing dataset",
            load_from_cache_file=False
        )
        
        return tokenized_dataset
        
    def setup_rag(self):
        """Initialize RAG components"""
        try:
            logger.info("Setting up RAG system...")
            
            # Load knowledge base
            knowledge_base = self._load_knowledge_base()
            
            # Setup embeddings
            self.embeddings = self._initialize_embeddings()
            
            # Process texts for vector store
            texts = self._split_texts(knowledge_base)
            
            # Create vector store with metadata
            self.vector_store = FAISS.from_texts(
                texts,
                self.embeddings,
                metadatas=[{"source": f"chunk_{i}"} for i in range(len(texts))]
            )
            
            # Validate RAG setup
            self._validate_rag_setup()
            logger.info("RAG system setup complete")
            
        except Exception as e:
            logger.error(f"Failed to setup RAG: {e}")
            raise

           # Load your knowledge base content
    def _load_knowledge_base(self):
        """Load and validate knowledge base content"""
        try:
            knowledge_base = { 
            "triage_scenarios.txt": """Medical Triage Scenarios and Responses:

                EMERGENCY (999) SCENARIOS:
                1. Cardiovascular:
                - Chest pain/pressure
                - Heart attack symptoms
                - Irregular heartbeat with dizziness
                Response: Immediate 999 call, sit/lie down, chew aspirin if available
                
                2. Respiratory:
                - Severe breathing difficulty
                - Choking
                - Unable to speak full sentences
                Response: 999, sitting position, clear airway
                
                3. Neurological:
                - Stroke symptoms (FAST)
                - Seizures
                - Unconsciousness
                Response: 999, recovery position if unconscious
                
                4. Trauma:
                - Severe bleeding
                - Head injuries with confusion
                - Major burns
                Response: 999, apply direct pressure to bleeding
                
                URGENT CARE (111) SCENARIOS:
                1. Moderate Symptoms:
                - Persistent fever
                - Non-severe infections
                - Minor injuries
                Response: 111 contact, monitor symptoms
                
                2. Minor Emergencies:
                - Small cuts needing stitches
                - Sprains and strains
                - Mild allergic reactions
                Response: 111 or urgent care visit
                
                GP APPOINTMENT SCENARIOS:
                1. Routine Care:
                - Chronic condition review
                - Medication reviews
                - Non-urgent symptoms
                Response: Book routine GP appointment
                
                2. Preventive Care:
                - Vaccinations
                - Health screenings
                - Regular check-ups
                Response: Schedule with GP reception""",
                                "emergency_detection.txt": """Enhanced Emergency Detection Criteria:
                
                IMMEDIATE LIFE THREATS:
                1. Cardiac Symptoms:
                - Chest pain/pressure/tightness
                - Pain spreading to arms/jaw/neck
                - Sweating with nausea
                - Shortness of breath
                
                2. Breathing Problems:
                - Severe shortness of breath
                - Blue lips or face
                - Unable to complete sentences
                - Choking/airway blockage
                
                3. Neurological:
                - FAST (Face, Arms, Speech, Time)
                - Sudden confusion
                - Severe headache
                - Seizures
                - Loss of consciousness
                
                4. Severe Trauma:
                - Heavy bleeding
                - Deep wounds
                - Head injury with confusion
                - Severe burns
                - Broken bones with deformity
                
                5. Anaphylaxis:
                - Sudden swelling
                - Difficulty breathing
                - Rapid onset rash
                - Light-headedness
                
                URGENT BUT NOT IMMEDIATE:
                1. Moderate Symptoms:
                - Persistent fever
                - Dehydration
                - Non-severe infections
                - Minor injuries
                
                2. Worsening Conditions:
                - Increasing pain
                - Progressive symptoms
                - Medication reactions
                
                RESPONSE PROTOCOLS:
                1. For Life Threats:
                - Immediate 999 call
                - Clear first aid instructions
                - Stay on line until help arrives
                
                2. For Urgent Care:
                - 111 contact
                - Monitor for worsening
                - Document symptoms""",
                                "gp_booking.txt": """GP Appointment Booking Templates:
                
                APPOINTMENT TYPES:
                1. Routine Appointments:
                Template: "I need to book a routine appointment for [condition]. My availability is [times/dates]. My GP is Dr. [name] if available."
                
                2. Follow-up Appointments:
                Template: "I need a follow-up appointment regarding [condition] discussed on [date]. My previous appointment was with Dr. [name]."
                
                3. Medication Reviews:
                Template: "I need a medication review for [medication]. My last review was [date]."
                
                BOOKING INFORMATION NEEDED:
                1. Patient Details:
                - Full name
                - Date of birth
                - NHS number (if known)
                - Registered GP practice
                
                2. Appointment Details:
                - Nature of appointment
                - Preferred times/dates
                - Urgency level
                - Special requirements
                
                3. Contact Information:
                - Phone number
                - Alternative contact
                - Preferred contact method
                
                BOOKING PROCESS:
                1. Online Booking:
                - NHS app instructions
                - Practice website guidance
                - System navigation help
                
                2. Phone Booking:
                - Best times to call
                - Required information
                - Queue management tips
                
                3. Special Circumstances:
                - Interpreter needs
                - Accessibility requirements
                - Transport arrangements""",
                                "cultural_sensitivity.txt": """Cultural Sensitivity Guidelines:
                
                CULTURAL AWARENESS:
                1. Religious Considerations:
                - Prayer times
                - Religious observations
                - Dietary restrictions
                - Gender preferences for care
                - Religious festivals/fasting periods
                
                2. Language Support:
                - Interpreter services
                - Multi-language resources
                - Clear communication methods
                - Family involvement preferences
                
                3. Cultural Beliefs:
                - Traditional medicine practices
                - Cultural health beliefs
                - Family decision-making
                - Privacy customs
                
                COMMUNICATION APPROACHES:
                1. Respectful Interaction:
                - Use preferred names/titles
                - Appropriate greetings
                - Non-judgmental responses
                - Active listening
                
                2. Language Usage:
                - Clear, simple terms
                - Avoid medical jargon
                - Confirm understanding
                - Respect silence/pauses
                
                3. Non-verbal Communication:
                - Eye contact customs
                - Personal space
                - Body language awareness
                - Gesture sensitivity
                
                SPECIFIC CONSIDERATIONS:
                1. South Asian Communities:
                - Family involvement
                - Gender sensitivity
                - Traditional medicine
                - Language diversity
                
                2. Middle Eastern Communities:
                - Gender-specific care
                - Religious observations
                - Family hierarchies
                - Privacy concerns
                
                3. African/Caribbean Communities:
                - Traditional healers
                - Community involvement
                - Historical medical mistrust
                - Cultural specific conditions
                
                4. Eastern European Communities:
                - Direct communication
                - Family involvement
                - Medical documentation
                - Language support
                
                INCLUSIVE PRACTICES:
                1. Appointment Scheduling:
                - Religious holidays
                - Prayer times
                - Family availability
                - Interpreter needs
                
                2. Treatment Planning:
                - Cultural preferences
                - Traditional practices
                - Family involvement
                - Dietary requirements
                
                3. Support Services:
                - Community resources
                - Cultural organizations
                - Language services
                - Social support""",
                                "service_boundaries.txt": """Service Limitations and Professional Boundaries:
                
                CLEAR BOUNDARIES:
                1. Medical Advice:
                - No diagnoses
                - No prescriptions
                - No treatment recommendations
                - No medical procedures
                - No second opinions
                
                2. Emergency Services:
                - Clear referral criteria
                - Documented responses
                - Follow-up protocols
                - Handover procedures
                
                3. Information Sharing:
                - Confidentiality limits
                - Data protection
                - Record keeping
                - Information governance
                
                PROFESSIONAL CONDUCT:
                1. Communication:
                - Professional language
                - Emotional boundaries
                - Personal distance
                - Service scope
                
                2. Service Delivery:
                - No financial transactions
                - No personal relationships
                - Clear role definition
                - Professional limits"""
            }
            
            # Create knowledge base directory
            os.makedirs("knowledge_base", exist_ok=True)
            
            # Write files and process documents
            documents = []
            for filename, content in knowledge_base.items():
                filepath = os.path.join("knowledge_base", filename)
                with open(filepath, "w", encoding="utf-8") as f:
                    f.write(content)
                documents.append(content)
                logger.info(f"Written knowledge base file: {filename}")
            
            return knowledge_base
    
        except Exception as e:
            logger.error(f"Error loading knowledge base: {str(e)}")
            raise

    def _validate_rag_setup(self):
        """Validate RAG system setup"""
        try:
            # Verify embeddings are working
            test_text = "This is a test embedding"
            test_embedding = self.embeddings.encode(test_text)
            assert len(test_embedding) > 0
            
            # Verify vector store is operational
            test_results = self.vector_store.similarity_search(test_text, k=1)
            assert len(test_results) > 0
            
            logger.info("RAG system validation successful")
            return True
        except Exception as e:
            logger.error(f"RAG system validation failed: {str(e)}")
            raise
    


    

    
    
    def setup_model_and_tokenizer(model_name="google/gemma-2b"):
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        tokenizer.pad_token = tokenizer.eos_token
        
        from transformers import BitsAndBytesConfig
        
        bnb_config = BitsAndBytesConfig(
            load_in_8bit=True,
            bnb_8bit_compute_dtype=torch.float16,
            llm_int8_enable_fp32_cpu_offload=True
        )
        
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            device_map="auto",
            quantization_config=bnb_config,
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True
        )
        
        model = prepare_model_for_kbit_training(model)
        
        lora_config = LoraConfig(
            r=4,
            lora_alpha=16,
            target_modules=["q_proj", "v_proj"],
            lora_dropout=0.05,
            bias="none",
            task_type="CAUSAL_LM"
        )
        
        model = get_peft_model(model, lora_config)
        model.print_trainable_parameters()
        
        return model, tokenizer
    
    def setup_training_arguments(output_dir="./pearly_fine_tuned"):
        return TrainingArguments(
            output_dir=output_dir,
            num_train_epochs=1,
            per_device_train_batch_size=1,
            gradient_accumulation_steps=16,
            warmup_steps=50,
            logging_steps=10,
            save_steps=200,
            learning_rate=2e-4,
            fp16=True,
            gradient_checkpointing=True,
            gradient_checkpointing_kwargs={"use_reentrant": False},
            optim="adamw_8bit",
            max_grad_norm=0.3,
            weight_decay=0.001,
            logging_dir="./logs",
            save_total_limit=2,
            remove_unused_columns=False,
            dataloader_pin_memory=False,
            max_steps=500,
            report_to=["none"],
        )

    def train(self):
        """Main training pipeline with RAG integration"""
        try:
            logger.info("Starting training pipeline")
            
            # Clear GPU memory
            torch.cuda.empty_cache()
            if torch.cuda.is_available():
                torch.cuda.reset_peak_memory_stats()
            
            # Setup model, tokenizer, and RAG
            logger.info("Setting up model components...")
            self.model, self.tokenizer = self.setup_model_and_tokenizer()
            self.setup_rag()
            
            # Prepare and process datasets
            logger.info("Preparing datasets...")
            self.dataset = self.prepare_initial_datasets(batch_size=4)
            self.processed_dataset = self.prepare_dataset(
                self.dataset,
                self.tokenizer,
                max_length=256,
                batch_size=2
            )
            
            # Train model
            logger.info("Starting training...")
            training_args = self.setup_training_arguments()
            trainer = Trainer(
                model=self.model,
                args=training_args,
                train_dataset=self.processed_dataset,
                tokenizer=self.tokenizer
            )
            trainer.train()
            
            # Save and push to hub
            logger.info("Saving model...")
            trainer.save_model()
            if os.getenv('HF_TOKEN'):
                trainer.push_to_hub(
                    "Pearilsa/pearly_med_triage_chatbot_kagglex",
                    private=True
                )
            
            logger.info("Training completed successfully!")
            
        except Exception as e:
            logger.error(f"Training failed: {e}")
            raise
        finally:
            torch.cuda.empty_cache()

if __name__ == "__main__":
    # Initialize trainer
    trainer = ModelTrainer()
    
    # Train model
    trainer.train()
    
    def _get_enhanced_context(self, query: str) -> str:
        """Get relevant context with scores"""
        try:
            # Get documents with similarity scores
            docs_and_scores = self.vector_store.similarity_search_with_score(
                query,
                k=self.num_relevant_chunks
            )
            
            # Filter and format relevant contexts
            relevant_contexts = []
            for doc, score in docs_and_scores:
                if score < 0.8:  # Lower score means more relevant
                    source = doc.metadata.get('source', 'Unknown')
                    relevant_contexts.append(
                        f"[Source: {source}]\n{doc.page_content}"
                    )
            
            return "\n\n".join(relevant_contexts) if relevant_contexts else ""
            
        except Exception as e:
            logger.error(f"Error retrieving enhanced context: {e}")
            return ""

    def _initialize_embeddings(self):
        try:
            return HuggingFaceEmbeddings(
                model_name="sentence-transformers/all-MiniLM-L6-v2",
                cache_folder="./embeddings_cache"  # Added caching
            )
        except Exception as e:
            logger.error(f"Failed to initialize embeddings: {str(e)}")
            raise

    def _split_texts(self, knowledge_base):
        splitter = RecursiveCharacterTextSplitter(
            chunk_size=self.chunk_size,
            chunk_overlap=self.chunk_overlap,
            length_function=len,
            add_start_index=True
        )
        
        all_texts = []
        for content in knowledge_base.values():
            texts = splitter.split_text(content)
            all_texts.extend(texts)
        return all_texts

    def get_relevant_context(self, query):
        try:
            docs = self.vector_store.similarity_search(query, k=3)
            return "\n".join(doc.page_content for doc in docs)
        except Exception as e:
            logger.error(f"Error retrieving context: {str(e)}")
            return ""

    @torch.inference_mode()
    def generate_response(self, message: str, history: list) -> str:
        """Generate response using both fine-tuned model and RAG"""
        try:
            # Rate limiting and memory management
            current_time = time.time()
            if current_time - self.last_interaction_time < self.interaction_cooldown:
                time.sleep(self.interaction_cooldown)
            torch.cuda.empty_cache()
            
            # Get enhanced context from RAG
            context = self._get_enhanced_context(message)
            
            # Format conversation history
            conv_history = "\n".join([
                f"User: {turn['input']}\nAssistant: {turn['output']}"
                for turn in history[-3:]  # Keep last 3 turns
            ])
            
            # Create enhanced prompt with RAG context
            prompt = f"""<start_of_turn>system
Using these medical guidelines:

{context}

Previous conversation:
{conv_history}

Guidelines:
1. Assess symptoms and severity based on both your training and the provided guidelines
2. Ask relevant follow-up questions if needed
3. Direct to appropriate care (999, 111, or GP) according to symptom severity
4. Show empathy and cultural sensitivity
5. Never diagnose or recommend treatments
<end_of_turn>
<start_of_turn>user
{message}
<end_of_turn>
<start_of_turn>assistant"""

            # Generate response with model
            inputs = self.tokenizer(
                prompt,
                return_tensors="pt",
                truncation=True,
                max_length=512
            ).to(self.model.device)

            outputs = self.model.generate(
                **inputs,
                max_new_tokens=256,
                min_new_tokens=20,
                do_sample=True,
                temperature=0.7,
                top_p=0.9,
                repetition_penalty=1.2,
                no_repeat_ngram_size=3
            )
            
            # Process response
            response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            response = response.split("<start_of_turn>assistant")[-1].strip()
            if "<end_of_turn>" in response:
                response = response.split("<end_of_turn>")[0].strip()
            
            self.last_interaction_time = time.time()
            return response
            
        except Exception as e:
            logger.error(f"Error generating response: {e}")
            return "I apologize, but I encountered an error. Please try again."
            
    def handle_feedback(self, message: str, response: str, feedback: int):
        """Handle user feedback for responses"""
        try:
            timestamp = datetime.now().isoformat()
            feedback_data = {
                "message": message,
                "response": response,
                "feedback": feedback,
                "timestamp": timestamp
            }
            
            # Log feedback
            logger.info(f"Feedback received: {feedback_data}")
            
            # Here you could:
            # 1. Store feedback in a database
            # 2. Send to monitoring system
            # 3. Use for model improvements
            
            return True
        except Exception as e:
            logger.error(f"Error handling feedback: {e}")
            return False

    def __del__(self):
        """Cleanup resources"""
        try:
            if hasattr(self, 'model'):
                del self.model
            ModelManager.clear_gpu_memory()
        except Exception as e:
            logger.error(f"Error in cleanup: {e}")


def create_demo():
    try:
        # Initialize bot
        bot = PearlyBot()

        def chat(message: str, history: list):
            """Handle chat interactions"""
            try:
                if not message.strip():
                    return history
                
                response = bot.generate_response(message, history)
                history.append({
                    "role": "user",
                    "content": message
                })
                history.append({
                    "role": "assistant",
                    "content": response
                })
                return history
            except Exception as e:
                logger.error(f"Chat error: {e}")
                return history + [{
                    "role": "assistant",
                    "content": "I apologize, but I'm experiencing technical difficulties. For emergencies, please call 999."
                }]

        def process_feedback(positive: bool, comment: str, history: list):
            try:
                if not history or len(history) < 2:
                    return gr.update(value="")
                
                last_user_msg = history[-2]["content"] if isinstance(history[-2], dict) else history[-2][0]
                last_bot_msg = history[-1]["content"] if isinstance(history[-1], dict) else history[-1][1]
                
                bot.handle_feedback(
                    message=last_user_msg,
                    response=last_bot_msg,
                    feedback=1 if positive else -1
                )
                return gr.update(value="")
            except Exception as e:
                logger.error(f"Error processing feedback: {e}")
                return gr.update(value="")

        # Create Gradio interface
        with gr.Blocks(theme=gr.themes.Soft(...)) as demo:
            # 1. First, create all UI elements
            # CSS styles
            gr.HTML("""<style>...""")

            # Emergency Banner
            gr.HTML("""<div class="emergency-banner">...""")

            # Header
            with gr.Row(elem_classes="header"):
                gr.Markdown("""# GP Medical Triage Assistant...""")

            # Features Grid
            gr.HTML("""<div class="features-grid">...""")

            # Chat Interface
            with gr.Row():
                with gr.Column(scale=4):
                    chatbot = gr.Chatbot(...)
                    with gr.Row():
                        msg = gr.Textbox(...)
                        submit = gr.Button(...)

                with gr.Column(scale=1):
                    # Quick Actions
                    emergency_btn = gr.Button("🚨 Emergency Info", variant="secondary")
                    nhs_111_btn = gr.Button("πŸ“ž NHS 111 Info", variant="secondary")
                    booking_btn = gr.Button("πŸ“… GP Booking", variant="secondary")
                    
                    # Controls
                    clear = gr.Button("πŸ—‘οΈ Clear Chat")
                    
                    # Feedback
                    with gr.Row():
                        feedback_positive = gr.Button("πŸ‘", elem_id="thumb-up")
                        feedback_negative = gr.Button("πŸ‘Ž", elem_id="thumb-down")
                    feedback_text = gr.Textbox(...)
                    feedback_submit = gr.Button(...)

            # Examples and Guide
            with gr.Accordion("Example Messages", open=False):
                gr.Examples([...])

            with gr.Accordion("NHS Services Guide", open=False):
                gr.Markdown("""...""")
        

        # Create enhanced Gradio interface
        with gr.Blocks(theme=gr.themes.Soft(
            primary_hue="blue",
            secondary_hue="indigo",
            neutral_hue="slate",
            font=gr.themes.GoogleFont("Inter")
        )) as demo:
            # Custom CSS for enhanced styling
            gr.HTML("""
                <style>
                    .container { max-width: 900px; margin: auto; }
                    .header { text-align: center; padding: 20px; }
                    .emergency-banner {
                        background-color: #ff4444;
                        color: white;
                        padding: 10px;
                        text-align: center;
                        font-weight: bold;
                        margin-bottom: 20px;
                    }
                    .feature-card {
                        padding: 15px;
                        border-radius: 10px;
                        text-align: center;
                        transition: transform 0.2s;
                        color: white;
                        font-weight: bold;
                    }
                    .feature-card:nth-child(1) { background: linear-gradient(135deg, #2193b0, #6dd5ed); }
                    .feature-card:nth-child(2) { background: linear-gradient(135deg, #834d9b, #d04ed6); }
                    .feature-card:nth-child(3) { background: linear-gradient(135deg, #ff4b1f, #ff9068); }
                    .feature-card:nth-child(4) { background: linear-gradient(135deg, #38ef7d, #11998e); }
                    .feature-card:hover {
                        transform: translateY(-5px);
                        box-shadow: 0 5px 15px rgba(0,0,0,0.2);
                    }
                    .feature-card span.emoji {
                        font-size: 2em;
                        display: block;
                        margin-bottom: 10px;
                    }
                    .message-textbox textarea { resize: none; }
                    #thumb-up, #thumb-down {
                        min-width: 60px;
                        padding: 8px;
                        margin: 5px;
                    }
                    .chatbot-message {
                        padding: 12px;
                        margin: 8px 0;
                        border-radius: 8px;
                    }
                    .user-message { background-color: #e3f2fd; }
                    .assistant-message { background-color: #f5f5f5; }
                    .feedback-section {
                        margin-top: 20px;
                        padding: 15px;
                        border-radius: 8px;
                        background-color: #f8f9fa;
                    }
                </style>
            """)

            # Emergency Banner
            gr.HTML("""
                <div class="emergency-banner">
                    🚨 For medical emergencies, always call 999 immediately 🚨
                </div>
            """)

            # Header Section
            with gr.Row(elem_classes="header"):
                gr.Markdown("""
                    # GP Medical Triage Assistant - Pearly
                    Welcome to your personal medical triage assistant. I'm here to help assess your symptoms and guide you to appropriate care.
                """)

            # Main Features Grid
            gr.HTML("""
                <div class="features-grid">
                    <div class="feature-card">
                        <span class="emoji">πŸ₯</span>
                        <div>GP Appointments</div>
                    </div>
                    <div class="feature-card">
                        <span class="emoji">πŸ”</span>
                        <div>Symptom Assessment</div>
                    </div>
                    <div class="feature-card">
                        <span class="emoji">⚑</span>
                        <div>Urgent Care Guide</div>
                    </div>
                    <div class="feature-card">
                        <span class="emoji">πŸ’Š</span>
                        <div>Medical Advice</div>
                    </div>
                </div>
            """)

            # Chat Interface
            with gr.Row():
                with gr.Column(scale=4):
                    chatbot = gr.Chatbot(
                        value=[{
                            "role": "assistant",
                            "content": "Hello! I'm Pearly, your GP medical assistant. How can I help you today?"
                        }],
                        height=500,
                        elem_id="chatbot",
                        type="messages",
                        show_label=False
                    )
                    
                    with gr.Row():
                        msg = gr.Textbox(
                            label="Your message",
                            placeholder="Type your message here...",
                            lines=2,
                            scale=4,
                            autofocus=True,
                            submit_on_enter=True
                        )
                        submit = gr.Button("Send", variant="primary", scale=1)

                with gr.Column(scale=1):
                    # Quick Actions Panel
                    gr.Markdown("### Quick Actions")
                    emergency_btn = gr.Button("🚨 Emergency Info", variant="secondary")
                    nhs_111_btn = gr.Button("πŸ“ž NHS 111 Info", variant="secondary")
                    booking_btn = gr.Button("πŸ“… GP Booking", variant="secondary")
                    
                    # Controls and Feedback
                    gr.Markdown("### Controls")
                    clear = gr.Button("πŸ—‘οΈ Clear Chat")
                    
                    gr.Markdown("### Feedback")
                    with gr.Row():
                        feedback_positive = gr.Button("πŸ‘", elem_id="thumb-up")
                        feedback_negative = gr.Button("πŸ‘Ž", elem_id="thumb-down")
                    
                    feedback_text = gr.Textbox(
                        label="Additional comments",
                        placeholder="Tell us more...",
                        lines=2,
                        visible=True
                    )
                    feedback_submit = gr.Button("Submit Feedback", visible=True)

            # Examples and Information
            with gr.Accordion("Example Messages", open=False):
                gr.Examples([
                    ["I've been having severe headaches for the past week"],
                    ["I need to book a routine checkup"],
                    ["I'm feeling very anxious lately and need help"],
                    ["My child has had a fever for 2 days"],
                    ["I need information about COVID-19 testing"]
                ], inputs=msg)

            with gr.Accordion("NHS Services Guide", open=False):
                gr.Markdown("""
                    ### Emergency Services (999)
                    - Life-threatening emergencies
                    - Severe injuries
                    - Suspected heart attack or stroke
                    
                    ### NHS 111
                    - Urgent but non-emergency situations
                    - Medical advice needed
                    - Unsure where to go
                    
                    ### GP Services
                    - Routine check-ups
                    - Non-urgent medical issues
                    - Prescription renewals
                """)

        

        def show_emergency_info():
                return """🚨 Emergency Services (999)
                - For life-threatening emergencies
                - Severe chest pain
                - Difficulty breathing
                - Severe bleeding
                - Loss of consciousness
                """
            
        def show_nhs_111_info():
            return """πŸ“ž NHS 111 Service
            - Available 24/7
            - Medical advice
            - Local service information
            - Urgent care guidance
            """
        
        def show_booking_info():
            return """πŸ“… GP Booking Options
            - Online booking
            - Phone booking
            - Routine appointments
            - Urgent appointments
            """

            # Chat handlers
            msg.submit(chat, [msg, chatbot], [chatbot]).then(
                lambda: gr.update(value=""), None, [msg]
            )
            
            submit.click(chat, [msg, chatbot], [chatbot]).then(
                lambda: gr.update(value=""), None, [msg]
            )

            # Quick action handlers
            emergency_btn.click(lambda: show_emergency_info(), outputs=[msg])
            nhs_111_btn.click(lambda: show_nhs_111_info(), outputs=[msg])
            booking_btn.click(lambda: show_booking_info(), outputs=[msg])
            
            # Feedback handlers
            feedback_positive.click(
                lambda h: process_feedback(True, feedback_text.value, h),
                inputs=[chatbot],
                outputs=[feedback_text]
            )
            
            feedback_negative.click(
                lambda h: process_feedback(False, feedback_text.value, h),
                inputs=[chatbot],
                outputs=[feedback_text]
            )
            
            # Clear chat
            clear.click(lambda: None, None, chatbot)

            # 3. Finally, add the queue
            demo.queue(concurrency_count=1, max_size=10)

        return demo

    except Exception as e:
        logger.error(f"Error creating demo: {e}")
        raise

if __name__ == "__main__":
    # Initialize logging and load env vars
    logging.basicConfig(level=logging.INFO)
    load_dotenv()
    
    # Create and launch demo
    demo = create_demo()
    demo.launch(server_name="0.0.0.0", server_port=7860)