File size: 9,853 Bytes
6bccf2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
"""All prompts utilized by the RAG pipeline"""
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
from langchain_google_genai import ChatGoogleGenerativeAI
import os
from tools import json_to_table, goal_feasibility, save_data, rag_tool
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langgraph.prebuilt import create_react_agent
from langchain.tools import Tool
from dotenv import load_dotenv
load_dotenv()
gemini = ChatGoogleGenerativeAI(model = 'gemini-2.0-flash')
llm = ChatOpenAI(
model='gpt-4.1-nano',
api_key=os.environ.get('OPEN_AI_KEY'),
temperature=0.2
)
# Schema for grading documents
class GradeDocuments(BaseModel):
binary_score: str = Field(description="Documents are relevant to the question, 'yes' or 'no'")
structured_llm_grader = llm.with_structured_output(GradeDocuments)
system = """You are a grader assessing relevance of a retrieved document to a user question.
If the document contains keyword(s) or semantic meaning related to the question, grade it as relevant.
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question."""
grade_prompt = ChatPromptTemplate.from_messages([
("system", system),
("human", "Retrieved document: \n\n {data} \n\n User question: {query}")
])
retrieval_grader = grade_prompt | structured_llm_grader
prompt = PromptTemplate(
template='''
You are a SEBI-Registered Investment Advisor (RIA) specializing in Indian financial markets and client relationship management.
Your task is to understand and respond to the user's financial query using the following inputs:
- Query: {query}
- Documents: {data}
- User Profile: {user_data}
- Savings Allocations: {allocations}
Instructions:
1. Understand the User's Intent: Carefully interpret what the user is asking about their investments.
2. Analyze Allocations: Evaluate the savings allocation data to understand the user's current financial posture.
3. Personalized Response:
- If detailed user profile and allocation data are available, prioritize your response based on this data.
- If profile or allocation data is sparse, rely more heavily on the query context.
4. Use Supporting Documents: Extract relevant insights from the provided documents ({data}) to support your answer.
5. When Unsure: If the documents or data do not contain the necessary information, say "I don't know" rather than guessing.
Always aim to give a response that is:
- Data-informed
- Client-centric
- Aligned with Indian financial regulations and norms
''',
input_variables=['query', 'data', 'user_data', 'allocations']
)
rag_chain = prompt | gemini | StrOutputParser()
# Prompt
system_rewrite = """You a question re-writer that converts an input question to a better version that is optimized \n
for web search. Look at the input and try to reason about the underlying semantic intent / meaning."""
re_write_prompt = ChatPromptTemplate.from_messages(
[
("system", system_rewrite),
(
"human",
"Here is the initial question: \n\n {query} \n Formulate an improved question.",
),
]
)
question_rewriter = re_write_prompt | llm | StrOutputParser()
from pydantic import BaseModel, Field, RootModel
from typing import Dict
from langchain_core.output_parsers import JsonOutputParser
# Define the Pydantic model using RootModel
class CategoryProbabilities(RootModel):
"""Probabilities for different knowledge base categories."""
root: Dict[str, float] = Field(description="Dictionary mapping category names to probability scores")
system_classifier = """You are a query classifier that determines the most relevant knowledge bases (KBs) for a given user query.
Analyze the semantic meaning and intent of the query and assign probability scores (between 0 and 1) to each KB.
Ensure the probabilities sum to 1 and output a JSON dictionary with category names as keys and probabilities as values.
"""
classification_prompt = ChatPromptTemplate.from_messages(
[
("system", system_classifier),
(
"human",
"Here is the user query: \n\n {query} \n\n Assign probability scores to each of the following KBs:\n"
"{categories}\n\nReturn a JSON object with category names as keys and probability scores as values."
),
]
)
# Create a JSON output parser
json_parser = JsonOutputParser(pydantic_object=CategoryProbabilities)
# Create the chain with the structured output parser
query_classifier = classification_prompt | llm | json_parser
#query_classifier = classification_prompt | llm | StrOutputParser()
"""
name: str
position: Dict[str, int]
riskiness: int
illiquidity: int
amount: float
currency: str = "inr"
percentage: float
explanation: Dict[str, str]
assets: List[AssetAllocation]
"""
#--------------------------------------------------------------------------------------
tools = [
{
"type": "function",
"function": {
"name": "json_to_table",
"description": "Convert JSON data to a markdown table. Use when user asks to visualise or tabulate structured data.",
"parameters": {
"type": "object",
"properties": {
"arguments": {
"type": "object",
"properties": {
"json_data": {
"type": "object",
"description": "The JSON data to convert to a table"
}
},
"required": ["json_data"]
}
},
"required": ["arguments"]
}
}
},
{
"type": "function",
"function": {
"name": "rag_tool",
"description": "Lets the agent use RAG system as a tool",
"parameters": {
"type": "object",
"properties": {
"arguments": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The query to search for in the RAG system"
}
},
"required": ["query"]
}
},
"required": ["arguments"]
}
}
}
]
template = '''You are a SEBI-Registered Investment Advisor (RIA) specializing in Indian financial markets and client relationship management.
Your task is to understand and respond to the user's financial query using the following inputs:
- Query: {query}
- User Profile: {user_data}
- Savings Allocations: {allocations}
- Chat History: {chat_history}
- π Retrieved Context (optional): {retrieved_context}
Instructions:
1. **Understand the User's Intent**: Carefully interpret what the user is asking about their investments. If a user input contradicts previously stated preferences or profile attributes (e.g., low risk appetite or crypto aversion), ask a clarifying question before proceeding. Do not update allocations or goals unless the user confirms the change explicitly.
2. **Analyze Allocations**: Evaluate the savings allocation data to understand the user's current financial posture.
3. **Use Retrieved Context**: If any contextual information is provided in `retrieved_context`, leverage it to improve your response quality and relevance.
4. **Always Update Information**: If the user shares any new demographic, financial, or preference-related data, update the user profile accordingly. If they request changes in their allocations, ensure the changes are applied **proportionally** and that the total allocation always sums to 100%.
5. **IMPORTANT: When displaying or updating allocations, you MUST format the data as a Markdown table and always display allocations as a table only** using the following columns:
- Asset Class
- Type
- Label
- Old Amount (βΉ)
- Change (βΉ)
- New Amount (βΉ)
- Justification
7. **Maintain Conversational Memory**: Ensure updates are passed to memory using the specified `updates` structure.
8. **Tool Use Policy**:
- β
Use `rag_tool` for retrieving **external financial knowledge or regulation** context when necessary.
---
### π― Response Style Guide:
- π Keep it under 300 words.
- π Friendly tone: be warm and helpful.
- π Structured: use bullet points, short paragraphs, and headers.
- π Visually clear: break sections clearly.
- π Use emojis to guide attention and convey tone.
- π― Be direct and focused on the user's request.
---
### π If There Are Allocation Changes:
You **must** display a Markdown table as per the format above. Then, return memory update instructions using this JSON structure:
```json
{{
"updates": {{
"user_data": {{ ... }}, // Include only changed fields
"allocations": {{...}} // Include only changed rows
}}
}}
'''
# Create the prompt template
simple_prompt = ChatPromptTemplate.from_messages([
SystemMessagePromptTemplate.from_template(template=template),
MessagesPlaceholder(variable_name="chat_history", optional=True),
HumanMessagePromptTemplate.from_template("User Query: {query}"),
HumanMessagePromptTemplate.from_template("Current User Profile:\n{user_data}"),
HumanMessagePromptTemplate.from_template("Current Allocations:\n{allocations}"),
HumanMessagePromptTemplate.from_template("π Retrieved Context (if any):\n{retrieved_context}"),
])
# Create the chain with direct tool binding
llm = ChatOpenAI(
temperature=0.1,
model="gpt-4.1-nano",
)
llm_with_tools = llm.bind_tools(tools)
simple_chain = simple_prompt | llm_with_tools
|