Spaces:
Sleeping
Sleeping
File size: 10,516 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
import torch
from torch.nn import functional as F
from densepose.data.meshes.catalog import MeshCatalog
from densepose.structures.mesh import load_mesh_symmetry
from densepose.structures.transform_data import DensePoseTransformData
class DensePoseDataRelative:
"""
Dense pose relative annotations that can be applied to any bounding box:
x - normalized X coordinates [0, 255] of annotated points
y - normalized Y coordinates [0, 255] of annotated points
i - body part labels 0,...,24 for annotated points
u - body part U coordinates [0, 1] for annotated points
v - body part V coordinates [0, 1] for annotated points
segm - 256x256 segmentation mask with values 0,...,14
To obtain absolute x and y data wrt some bounding box one needs to first
divide the data by 256, multiply by the respective bounding box size
and add bounding box offset:
x_img = x0 + x_norm * w / 256.0
y_img = y0 + y_norm * h / 256.0
Segmentation masks are typically sampled to get image-based masks.
"""
# Key for normalized X coordinates in annotation dict
X_KEY = "dp_x"
# Key for normalized Y coordinates in annotation dict
Y_KEY = "dp_y"
# Key for U part coordinates in annotation dict (used in chart-based annotations)
U_KEY = "dp_U"
# Key for V part coordinates in annotation dict (used in chart-based annotations)
V_KEY = "dp_V"
# Key for I point labels in annotation dict (used in chart-based annotations)
I_KEY = "dp_I"
# Key for segmentation mask in annotation dict
S_KEY = "dp_masks"
# Key for vertex ids (used in continuous surface embeddings annotations)
VERTEX_IDS_KEY = "dp_vertex"
# Key for mesh id (used in continuous surface embeddings annotations)
MESH_NAME_KEY = "ref_model"
# Number of body parts in segmentation masks
N_BODY_PARTS = 14
# Number of parts in point labels
N_PART_LABELS = 24
MASK_SIZE = 256
def __init__(self, annotation, cleanup=False):
self.x = torch.as_tensor(annotation[DensePoseDataRelative.X_KEY])
self.y = torch.as_tensor(annotation[DensePoseDataRelative.Y_KEY])
if (
DensePoseDataRelative.I_KEY in annotation
and DensePoseDataRelative.U_KEY in annotation
and DensePoseDataRelative.V_KEY in annotation
):
self.i = torch.as_tensor(annotation[DensePoseDataRelative.I_KEY])
self.u = torch.as_tensor(annotation[DensePoseDataRelative.U_KEY])
self.v = torch.as_tensor(annotation[DensePoseDataRelative.V_KEY])
if (
DensePoseDataRelative.VERTEX_IDS_KEY in annotation
and DensePoseDataRelative.MESH_NAME_KEY in annotation
):
self.vertex_ids = torch.as_tensor(
annotation[DensePoseDataRelative.VERTEX_IDS_KEY], dtype=torch.long
)
self.mesh_id = MeshCatalog.get_mesh_id(annotation[DensePoseDataRelative.MESH_NAME_KEY])
if DensePoseDataRelative.S_KEY in annotation:
self.segm = DensePoseDataRelative.extract_segmentation_mask(annotation)
self.device = torch.device("cpu")
if cleanup:
DensePoseDataRelative.cleanup_annotation(annotation)
def to(self, device):
if self.device == device:
return self
new_data = DensePoseDataRelative.__new__(DensePoseDataRelative)
new_data.x = self.x.to(device)
new_data.y = self.y.to(device)
for attr in ["i", "u", "v", "vertex_ids", "segm"]:
if hasattr(self, attr):
setattr(new_data, attr, getattr(self, attr).to(device))
if hasattr(self, "mesh_id"):
new_data.mesh_id = self.mesh_id
new_data.device = device
return new_data
@staticmethod
def extract_segmentation_mask(annotation):
import pycocotools.mask as mask_utils
# TODO: annotation instance is accepted if it contains either
# DensePose segmentation or instance segmentation. However, here we
# only rely on DensePose segmentation
poly_specs = annotation[DensePoseDataRelative.S_KEY]
if isinstance(poly_specs, torch.Tensor):
# data is already given as mask tensors, no need to decode
return poly_specs
segm = torch.zeros((DensePoseDataRelative.MASK_SIZE,) * 2, dtype=torch.float32)
if isinstance(poly_specs, dict):
if poly_specs:
mask = mask_utils.decode(poly_specs)
segm[mask > 0] = 1
else:
for i in range(len(poly_specs)):
poly_i = poly_specs[i]
if poly_i:
mask_i = mask_utils.decode(poly_i)
segm[mask_i > 0] = i + 1
return segm
@staticmethod
def validate_annotation(annotation):
for key in [
DensePoseDataRelative.X_KEY,
DensePoseDataRelative.Y_KEY,
]:
if key not in annotation:
return False, "no {key} data in the annotation".format(key=key)
valid_for_iuv_setting = all(
key in annotation
for key in [
DensePoseDataRelative.I_KEY,
DensePoseDataRelative.U_KEY,
DensePoseDataRelative.V_KEY,
]
)
valid_for_cse_setting = all(
key in annotation
for key in [
DensePoseDataRelative.VERTEX_IDS_KEY,
DensePoseDataRelative.MESH_NAME_KEY,
]
)
if not valid_for_iuv_setting and not valid_for_cse_setting:
return (
False,
"expected either {} (IUV setting) or {} (CSE setting) annotations".format(
", ".join(
[
DensePoseDataRelative.I_KEY,
DensePoseDataRelative.U_KEY,
DensePoseDataRelative.V_KEY,
]
),
", ".join(
[
DensePoseDataRelative.VERTEX_IDS_KEY,
DensePoseDataRelative.MESH_NAME_KEY,
]
),
),
)
return True, None
@staticmethod
def cleanup_annotation(annotation):
for key in [
DensePoseDataRelative.X_KEY,
DensePoseDataRelative.Y_KEY,
DensePoseDataRelative.I_KEY,
DensePoseDataRelative.U_KEY,
DensePoseDataRelative.V_KEY,
DensePoseDataRelative.S_KEY,
DensePoseDataRelative.VERTEX_IDS_KEY,
DensePoseDataRelative.MESH_NAME_KEY,
]:
if key in annotation:
del annotation[key]
def apply_transform(self, transforms, densepose_transform_data):
self._transform_pts(transforms, densepose_transform_data)
if hasattr(self, "segm"):
self._transform_segm(transforms, densepose_transform_data)
def _transform_pts(self, transforms, dp_transform_data):
import detectron2.data.transforms as T
# NOTE: This assumes that HorizFlipTransform is the only one that does flip
do_hflip = sum(isinstance(t, T.HFlipTransform) for t in transforms.transforms) % 2 == 1
if do_hflip:
self.x = self.MASK_SIZE - self.x
if hasattr(self, "i"):
self._flip_iuv_semantics(dp_transform_data)
if hasattr(self, "vertex_ids"):
self._flip_vertices()
for t in transforms.transforms:
if isinstance(t, T.RotationTransform):
xy_scale = np.array((t.w, t.h)) / DensePoseDataRelative.MASK_SIZE
xy = t.apply_coords(np.stack((self.x, self.y), axis=1) * xy_scale)
self.x, self.y = torch.tensor(xy / xy_scale, dtype=self.x.dtype).T
def _flip_iuv_semantics(self, dp_transform_data: DensePoseTransformData) -> None:
i_old = self.i.clone()
uv_symmetries = dp_transform_data.uv_symmetries
pt_label_symmetries = dp_transform_data.point_label_symmetries
for i in range(self.N_PART_LABELS):
if i + 1 in i_old:
annot_indices_i = i_old == i + 1
if pt_label_symmetries[i + 1] != i + 1:
self.i[annot_indices_i] = pt_label_symmetries[i + 1]
u_loc = (self.u[annot_indices_i] * 255).long()
v_loc = (self.v[annot_indices_i] * 255).long()
self.u[annot_indices_i] = uv_symmetries["U_transforms"][i][v_loc, u_loc].to(
device=self.u.device
)
self.v[annot_indices_i] = uv_symmetries["V_transforms"][i][v_loc, u_loc].to(
device=self.v.device
)
def _flip_vertices(self):
mesh_info = MeshCatalog[MeshCatalog.get_mesh_name(self.mesh_id)]
mesh_symmetry = (
load_mesh_symmetry(mesh_info.symmetry) if mesh_info.symmetry is not None else None
)
self.vertex_ids = mesh_symmetry["vertex_transforms"][self.vertex_ids]
def _transform_segm(self, transforms, dp_transform_data):
import detectron2.data.transforms as T
# NOTE: This assumes that HorizFlipTransform is the only one that does flip
do_hflip = sum(isinstance(t, T.HFlipTransform) for t in transforms.transforms) % 2 == 1
if do_hflip:
self.segm = torch.flip(self.segm, [1])
self._flip_segm_semantics(dp_transform_data)
for t in transforms.transforms:
if isinstance(t, T.RotationTransform):
self._transform_segm_rotation(t)
def _flip_segm_semantics(self, dp_transform_data):
old_segm = self.segm.clone()
mask_label_symmetries = dp_transform_data.mask_label_symmetries
for i in range(self.N_BODY_PARTS):
if mask_label_symmetries[i + 1] != i + 1:
self.segm[old_segm == i + 1] = mask_label_symmetries[i + 1]
def _transform_segm_rotation(self, rotation):
self.segm = F.interpolate(self.segm[None, None, :], (rotation.h, rotation.w)).numpy()
self.segm = torch.tensor(rotation.apply_segmentation(self.segm[0, 0]))[None, None, :]
self.segm = F.interpolate(self.segm, [DensePoseDataRelative.MASK_SIZE] * 2)[0, 0]
|