Spaces:
Build error
Build error
File size: 4,808 Bytes
8ccf632 a4e4096 06f0278 8ccf632 06f0278 8ccf632 a4e4096 bb1ca36 5433fe6 a4e4096 54192f0 8ccf632 a4e4096 5433fe6 a4e4096 8ccf632 a4e4096 8ccf632 a4e4096 8ccf632 e2944a6 8ccf632 a4e4096 26a7c6b a992e53 8ccf632 a4e4096 8ccf632 a4e4096 8ccf632 b213a9c ceb48e8 b213a9c 8ccf632 b213a9c 8ccf632 a4e4096 8ccf632 2b62414 a4e4096 5433fe6 a4e4096 8ccf632 5433fe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from huggingface_hub import hf_hub_download
import os
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Initialize the pipeline globally
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
@spaces.GPU(duration=300)
def infer(prompt, lora_model, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
global pipe
# Load LoRA if specified
if lora_model:
try:
pipe.load_lora_weights(lora_model)
except Exception as e:
return None, seed, f"Failed to load LoRA model: {str(e)}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
try:
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
# Unload LoRA weights after generation
if lora_model:
pipe.unload_lora_weights()
return image, seed, "Image generated successfully."
except Exception as e:
return None, seed, f"Error during image generation: {str(e)}"
examples = [
["a tiny astronaut hatching from an egg on the moon", ""],
["a cat holding a sign that says hello world", ""],
["an anime illustration of a wiener schnitzel", ""],
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [dev] with LoRA Support
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
lora_model = gr.Text(
label="LoRA Model ID (optional)",
placeholder="Enter Hugging Face LoRA model ID",
)
result = gr.Image(label="Result", show_label=False)
output_message = gr.Textbox(label="Output Message")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt, lora_model],
outputs=[result, seed, output_message],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, lora_model, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed, output_message]
)
demo.launch() |