File size: 6,942 Bytes
fd0472a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# -*- coding: utf-8 -*-
"""
Created on Fri Feb 24 15:24:06 2023

@author: BorowyP
"""

import pandas as pd
import hvplot.pandas # Adds .hvplot and .interactive methods to Pandas dataframes
import panel as pn # Panel is a simple, flexible and enterprise-ready data app framework
import holoviews as hv
from holoviews.operation.timeseries import rolling, rolling_outlier_std


hv.extension('bokeh')
#pn.extension('tabulator')

pn.extension(sizing_mode="stretch_width")
#pd.set_option("precision", 0)

PALETTE = ["#ff6f69", "#ffcc5c", "#88d8b0", ]
ACCENT_BASE_COLOR = PALETTE[0]

#import time
#start = time.time()
#print('load data')

import numpy as np

from math import pi

from bokeh.palettes import Category20c, Category20
from bokeh.plotting import figure
from bokeh.transform import cumsum
from bokeh.layouts import row
from bokeh.models.formatters import DatetimeTickFormatter
formatter = DatetimeTickFormatter(months='%b %Y') # wird in .hvplot benötigt für x-achse!


air_temp = pd.read_csv(r'df_air_temp.csv', sep=',',
                       header=0, 
                       #skiprows=[1], 
                       decimal=',', 
                       #dtype={'temp': np.float64},
                       na_values=('#-INF', '#NAN'))

air_temp.index = pd.to_datetime(air_temp['Date'], format='%Y.%m.%d %H:%M:%S')

air_temp = air_temp.drop(['Date'], axis=1)
air_temp['temp'] = air_temp['temp'].astype(np.float64, copy=True, errors='ignore')
air_temp = air_temp.round(1)


air_date_slider = pn.widgets.DateRangeSlider(name='Date', start=air_temp.index.min(), end=air_temp.index.max())

Stndrt = pn.widgets.RadioButtonGroup(name='Standort', options=['Glienig', 'Groß Liebitz', 'Krausnick', 'Halbe', 'Spreeau', 'Hangelsberg'],button_type='success')

air_temp_inter = air_temp.interactive()

air_temp_inter = (
    air_temp_inter[
        (air_temp_inter.Standort == Stndrt) &
        (air_temp_inter.index >= air_date_slider.param.value_start) &
        (air_temp_inter.index <= air_date_slider.param.value_end)
 
    ]) 


def lin_reg(dfx,dfy, date):
    # Formel für regres-gerade: y= alpha + b * x
    # https://www.crashkurs-statistik.de/einfache-lineare-regression/
    
    lin_df = pd.DataFrame({'Date' : date,
                           'Temperatur' : dfy,
                           'x-x.mean' : dfx-dfx.mean(),
                          'y-y.mean' : dfy-dfy.mean(),
                          '(x-x.mean) * (y-y.mean)': (dfx-dfx.mean()) * (dfy-dfy.mean()),
                           '(x-x.mean)²' : (dfx-dfx.mean()) * (dfx-dfx.mean()),})
    
    b = lin_df['(x-x.mean) * (y-y.mean)'].sum()/ lin_df['(x-x.mean)²'].sum()
    
    alpha = dfy.mean() - b * dfx.mean()
    
    lin_df['Lineare Regression'] = round(alpha + b * dfx,2)
    
    lin_plot = lin_df.hvplot(x='Date',
                                    xlabel='Datum',
                                    title=Stndrt, 
                                    y=['Temperatur', 'Lineare Regression'],
                                    ylabel='Lufttemperatur [°C]', 
                                    color=PALETTE, 
                                    line_width=0.5, 
                                    xformatter=formatter)
    
    SQE = ((lin_df['Lineare Regression']-dfy.mean())*(lin_df['Lineare Regression']-dfy.mean())).sum()
    
    SQT = (lin_df['y-y.mean'] * lin_df['y-y.mean']).sum()
    
    R_Wert = round(SQE/SQT,2)
    
    
    mean = round(dfy.mean(),2)
    median = dfy.median()
    maxm = dfy.max()
    minm = dfy.min()
    anz = dfy.count()
    
    monitor_df = pd.DataFrame({'Standort' :  [Stndrt.value],
                              'von' : [air_date_slider.value[0]], 
                               'bis' : [air_date_slider.value[1]],
                               'Mittelwert' : [mean],
                               'Median' : [median],
                               'Maximum' : [maxm],
                               'Minimum' : [minm],
                               'Anzahl' : [anz],
                               'R²' : [R_Wert]
                              
                              })
    
    return pn.Column(lin_plot, monitor_df)



def callback(air_temp_inter):
    y = air_temp_inter.temp
    x = air_temp_inter['Unnamed: 0']
    return pn.Column(lin_reg(x,y, air_temp_inter.index))


airtempplot = air_temp_inter.pipe(callback)




temp_glienig = pd.DataFrame({'Glienig': air_temp.loc[air_temp['Standort'] == 'Glienig']['temp']}, 
                           index = air_temp.loc[air_temp['Standort'] == 'Glienig'].index)
temp_grlieb = pd.DataFrame({'Groß Liebitz': air_temp.loc[air_temp['Standort'] == 'Groß Liebitz']['temp']}, 
                          index = air_temp.loc[air_temp['Standort'] == 'Groß Liebitz'].index)
temp_halbe = pd.DataFrame({'Halbe' : air_temp.loc[air_temp['Standort'] == 'Halbe']['temp']}, 
                         index= air_temp.loc[air_temp['Standort'] == 'Halbe'].index)
temp_hberg = pd.DataFrame({'Hangelsberg' : air_temp.loc[air_temp['Standort'] == 'Hangelsberg']['temp']}, 
                         index= air_temp.loc[air_temp['Standort'] == 'Hangelsberg'].index)
temp_krausnick = pd.DataFrame({'Krausnick' : air_temp.loc[air_temp['Standort'] == 'Krausnick']['temp']}, 
                            index= air_temp.loc[air_temp['Standort'] == 'Krausnick'].index)
temp_spreeau = pd.DataFrame({'Spreeau' : air_temp.loc[air_temp['Standort'] == 'Spreeau']['temp']}, 
                           index= air_temp.loc[air_temp['Standort'] == 'Spreeau'].index)

air_temp_hist = pd.concat([temp_glienig,temp_grlieb,temp_halbe,temp_hberg,temp_krausnick,temp_spreeau])

dfi_temp = air_temp_hist.interactive()

filtered = dfi_temp[
    (dfi_temp.index >= air_date_slider.param.value_start) &
    (dfi_temp.index <= air_date_slider.param.value_end)]

plot_air_temphist  = filtered.hvplot(y=['Glienig',
                                       'Groß Liebitz', 
                                       'Halbe', 
                                       'Hangelsberg',
                                       'Krausnick',
                                       'Spreeau'],   kind='hist', responsive=True, min_height=300, xlabel='Lufttemperatur', alpha=0.5)



import os


hd_logo = pn.pane.PNG('HD_Logo.png', width=100)
hd_logo

lfe_logo = pn.pane.PNG('LFE_Logo.png', width=100)

fnr_logo = pn.pane.PNG('fnr_logo.png', width=100)


template = pn.template.FastListTemplate(
    title='Holzdeko Dashboard', 
    sidebar=[hd_logo,
             pn.pane.Markdown("## Einstellungen"),
             'Standort',Stndrt,
             lfe_logo,
             fnr_logo
            ], 
    main=[pn.pane.Markdown("## Luft Temperaturdaten"),
          air_date_slider,
          airtempplot.panel(),
          plot_air_temphist,
                  
                   
                   
          
          
    #accent_base_color="#88d8b0",
    #header_background="#88d8b0",
         ])




template.servable();