Spaces:
Sleeping
Sleeping
File size: 19,270 Bytes
733fcd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import pandas as pd
from ast import literal_eval
from transformers import BertTokenizer, BertModel
from torch import nn
from torch.utils.data import Dataset, DataLoader
import torch
import os
from sklearn.model_selection import train_test_split
import random
import re
def clean_text(text):
#helper function to clean the text from whitespace, double spaces
# converts to lowercase and checks if the text is a string first to avoid errors
if not isinstance(text, str):
return ''
text = text.lower()
text = ' '.join(text.split())
return text.strip()
def setup_tag_categories():
tag_categories = {
'cuisine': [
'italian', 'chinese', 'mexican', 'indian', 'french', 'greek', 'thai',
'japanese', 'american', 'european', 'asian', 'mediterranean', 'spanish',
'german', 'korean', 'vietnamese', 'turkish', 'moroccan', 'lebanese'
],
'course': [
'main-dish', 'side-dishes', 'appetizers', 'desserts', 'breakfast',
'lunch', 'dinner', 'snacks', 'beverages', 'salads', 'soups'
],
'main_ingredient': [
'chicken', 'beef', 'pork', 'fish', 'seafood', 'vegetables', 'fruit',
'pasta', 'rice', 'cheese', 'chocolate', 'potato', 'lamb', 'turkey',
'beans', 'nuts', 'eggs', 'tofu'
],
'dietary': [
'vegetarian', 'vegan', 'gluten-free', 'low-carb', 'healthy', 'low-fat',
'diabetic', 'dairy-free', 'keto', 'paleo', 'whole30'
],
'cooking_method': [
'oven', 'stove-top', 'no-cook', 'microwave', 'slow-cooker', 'grilling',
'baking', 'roasting', 'frying', 'steaming', 'braising'
],
'difficulty': ['easy', 'beginner-cook', 'advanced', 'intermediate', 'quick'],
'time': [
'15-minutes-or-less', '30-minutes-or-less', '60-minutes-or-less',
'4-hours-or-less', 'weeknight'
],
'occasion': [
'holiday-event', 'christmas', 'thanksgiving', 'valentines-day',
'summer', 'winter', 'spring', 'fall', 'party', 'picnic'
]
}
return tag_categories
def setup_ingredient_groups():
ingredient_groups = {
'proteins': [
'chicken', 'beef', 'pork', 'fish', 'salmon', 'tuna', 'shrimp', 'turkey',
'lamb', 'bacon', 'ham', 'sausage', 'eggs', 'tofu', 'beans', 'lentils'
],
'vegetables': [
'onion', 'garlic', 'tomato', 'carrot', 'celery', 'pepper', 'mushroom',
'spinach', 'broccoli', 'zucchini', 'potato', 'sweet potato'
],
'grains_starches': [
'rice', 'pasta', 'bread', 'flour', 'oats', 'quinoa', 'barley', 'noodles'
],
'dairy': [
'milk', 'butter', 'cheese', 'cream', 'yogurt', 'sour cream', 'cream cheese'
]
}
return ingredient_groups
def categorize_recipe_tags(recipe_tags, tag_categories):
categorized_tags = {}
# Initialize empty lists for each category
for category_name in tag_categories.keys():
categorized_tags[category_name] = []
# Check each tag
for tag in recipe_tags:
tag_lower = tag.lower()
# Check each category
for category_name in tag_categories.keys():
category_keywords = tag_categories[category_name]
# Check if any keyword matches this tag
for keyword in category_keywords:
if keyword in tag_lower:
categorized_tags[category_name].append(tag)
break
return categorized_tags
def extract_main_ingredients(ingredients_list, ingredient_groups):
if not ingredients_list or not isinstance(ingredients_list, list):
return []
# Clean each ingredient
cleaned_ingredients = []
for ingredient in ingredients_list:
# Convert to string
ingredient_string = str(ingredient) if ingredient is not None else ''
if not ingredient_string or ingredient_string == 'nan':
continue
# Make lowercase
cleaned_ingredient = ingredient_string.lower()
# Remove common descriptor words
words_to_remove = ['fresh', 'dried', 'chopped', 'minced', 'sliced', 'diced', 'ground', 'large', 'small', 'medium']
for word in words_to_remove:
cleaned_ingredient = cleaned_ingredient.replace(word, '')
# Remove numbers
cleaned_ingredient = re.sub(r'\d+', '', cleaned_ingredient)
# Remove measurement words
measurement_words = ['cup', 'cups', 'tablespoon', 'tablespoons', 'teaspoon', 'teaspoons', 'pound', 'pounds', 'ounce', 'ounces']
for measurement in measurement_words:
cleaned_ingredient = cleaned_ingredient.replace(measurement, '')
# Clean up extra spaces
cleaned_ingredient = re.sub(r'\s+', ' ', cleaned_ingredient).strip()
# Only keep if it's long enough
if cleaned_ingredient and len(cleaned_ingredient) > 2:
cleaned_ingredients.append(cleaned_ingredient)
# Put ingredients in order of importance
ordered_ingredients = []
# First, add proteins (most important)
for ingredient in cleaned_ingredients:
for protein in ingredient_groups['proteins']:
if protein in ingredient:
ordered_ingredients.append(ingredient)
break
# Then add vegetables, grains, and dairy
other_groups = ['vegetables', 'grains_starches', 'dairy']
for group_name in other_groups:
for ingredient in cleaned_ingredients:
if ingredient not in ordered_ingredients:
for group_item in ingredient_groups[group_name]:
if group_item in ingredient:
ordered_ingredients.append(ingredient)
break
# Finally, add any remaining ingredients
for ingredient in cleaned_ingredients:
if ingredient not in ordered_ingredients:
ordered_ingredients.append(ingredient)
return ordered_ingredients
def create_structured_recipe_text(recipe, tag_categories, ingredient_groups):
# Get recipe tags and categorize them
recipe_tags = recipe['tags'] if isinstance(recipe['tags'], list) else []
categorized_tags = categorize_recipe_tags(recipe_tags, tag_categories)
# Choose tags in priority order
priority_categories = ['main_ingredient', 'cuisine', 'course', 'dietary', 'cooking_method']
selected_tags = []
for category in priority_categories:
if category in categorized_tags:
# Take up to 2 tags from each category
category_tags = categorized_tags[category][:2]
for tag in category_tags:
selected_tags.append(tag)
# Add some additional important tags
important_keywords = ['easy', 'quick', 'healthy', 'spicy', 'sweet']
remaining_tags = []
for tag in recipe_tags:
if tag not in selected_tags:
for keyword in important_keywords:
if keyword in tag.lower():
remaining_tags.append(tag)
break
# Add up to 3 remaining tags
for i in range(min(3, len(remaining_tags))):
selected_tags.append(remaining_tags[i])
# Process ingredients
recipe_ingredients = recipe['ingredients'] if isinstance(recipe['ingredients'], list) else []
main_ingredients = extract_main_ingredients(recipe_ingredients, ingredient_groups)
# Step 5: Create the final structured text
# Join first 8 ingredients
ingredients_text = ', '.join(main_ingredients[:8])
# Join first 10 tags
tags_text = ', '.join(selected_tags[:10])
# Get recipe name
recipe_name = str(recipe['name']).replace(' ', ' ').strip()
# Create final structured text
structured_text = f"Recipe: {recipe_name}. Ingredients: {ingredients_text}. Style: {tags_text}"
return structured_text
def create_pair_data(recipes_df: pd.DataFrame, interactions_df: pd.DataFrame ,num_pairs: int = 15000):
# This function creates the training pairs for the model.
# we first analyzed the data to create catogeries for the tags and ingredients. Under each of these, we have a list for cuisine, dietery, poultry, etc.
# As we trained the model, we found that the model was not able to learn the tags and ingredients so we created a structured text represenation so it can easily learn.
# the prompt used is: Analyze the two csv files attached and created a structured text representation to be used for training a bert model to understand
# tags and ingredients such that if a user later searches for a quick recipe, it can be used to find a recipe that is quick to make.
# Set up the structured text categories and groups
tag_categories = setup_tag_categories()
ingredient_groups = setup_ingredient_groups()
# Make a list to store all our pairs
pair_data_list = []
# create the pairs
for pair_number in range(num_pairs):
#Pick a random recipe from our dataframe
random_recipe_data = recipes_df.iloc[random.randint(0, len(recipes_df) - 1)]
# Get the tags from this recipe
recipe_tags_list = random_recipe_data['tags']
# Select some random tags (maximum 5, but maybe less if recipe has fewer tags)
num_tags_to_select = min(5, len(recipe_tags_list))
selected_tags_list = []
# Pick random sample of tags and join them to a query string
selected_tags_list = random.sample(recipe_tags_list, num_tags_to_select)
# Create the positive recipe text using structured format
positive_recipe_text = create_structured_recipe_text(random_recipe_data, tag_categories, ingredient_groups)
# Find a negative recipe that has less than 2 tags in common with the query
anchor = ' '.join(selected_tags_list)
anchor_tags_set = set(anchor.split())
negative_recipe_text = None
attempts_counter = 0
max_attempts_allowed = 100
# Keep trying until we find a good negative recipe (Added a max attempts to avoid infinite loop)
while negative_recipe_text is None and attempts_counter < max_attempts_allowed:
random_negative_recipe = recipes_df.iloc[random.randint(0, len(recipes_df) - 1)]
# Get tags from this negative recipe
negative_recipe_tags = random_negative_recipe['tags']
negative_recipe_tags_set = set(negative_recipe_tags)
# Count how many tags overlap
overlap_count = 0
for anchor_tag in anchor_tags_set:
if anchor_tag in negative_recipe_tags_set:
overlap_count = overlap_count + 1
attempts_counter = attempts_counter + 1
# If overlap is small enough (2 or less), we can use this as negative
if overlap_count <= 2:
# Create the negative recipe text using structured format
negative_recipe_text = create_structured_recipe_text(random_negative_recipe, tag_categories, ingredient_groups)
print(f"Found all negative recipes. Overlap: {overlap_count}")
break
# If we found a negative recipe, add this pair to our list
if negative_recipe_text is not None:
# Create a tuple with the three parts
pair_data_list.append((anchor, positive_recipe_text, negative_recipe_text))
print(f"Created pair {pair_number + 1}: Anchor='{anchor}', Overlap={overlap_count}")
else:
print(f"Could not find negative recipe for anchor '{anchor}' after {max_attempts_allowed} attempts")
# Show progress every 1000 pairs
if (pair_number + 1) % 1000 == 0:
print(f"Progress: Created {pair_number + 1}/{num_pairs} pairs")
# Convert our list to a pandas DataFrame and return it
result_dataframe = pd.DataFrame(pair_data_list, columns=['anchor', 'positive', 'negative'])
print(f"Final result: Created {len(result_dataframe)} pairs total")
return result_dataframe
class pos_neg_pair_dataset(Dataset):
#typical dataset class to tokenize for bert model and return the ids and masks
def __init__(self, pair_data, tokenizer, max_length=128):
self.pair_data = pair_data
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.pair_data)
def __getitem__(self, idx):
anchor = self.tokenizer(
self.pair_data.iloc[idx]['anchor'],
return_tensors='pt',
truncation=True,
max_length=self.max_length,
padding='max_length')
positive = self.tokenizer(
self.pair_data.iloc[idx]['positive'],
return_tensors='pt',
truncation=True,
max_length=self.max_length,
padding='max_length')
negative = self.tokenizer(
self.pair_data.iloc[idx]['negative'],
return_tensors='pt',
truncation=True,
max_length=self.max_length,
padding='max_length')
return {
'anchor_input_ids': anchor['input_ids'].squeeze(),
'anchor_attention_mask': anchor['attention_mask'].squeeze(),
'positive_input_ids': positive['input_ids'].squeeze(),
'positive_attention_mask': positive['attention_mask'].squeeze(),
'negative_input_ids': negative['input_ids'].squeeze(),
'negative_attention_mask': negative['attention_mask'].squeeze()
}
def evaluate_model(model, val_loader):
#evaluation method, same as training but with no gradient updates
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
model.eval()
total_loss = 0
criterion = nn.TripletMarginLoss(margin=1.0)
with torch.no_grad():
for batch in val_loader:
anchor_input_ids = batch['anchor_input_ids'].to(device)
anchor_attention_mask = batch['anchor_attention_mask'].to(device)
positive_input_ids = batch['positive_input_ids'].to(device)
positive_attention_mask = batch['positive_attention_mask'].to(device)
negative_input_ids = batch['negative_input_ids'].to(device)
negative_attention_mask = batch['negative_attention_mask'].to(device)
# Forward pass - get raw BERT embeddings
anchor_outputs = model(anchor_input_ids, anchor_attention_mask)
positive_outputs = model(positive_input_ids, positive_attention_mask)
negative_outputs = model(negative_input_ids, negative_attention_mask)
# Extract [CLS] token embeddings
anchor_emb = anchor_outputs.last_hidden_state[:, 0, :]
positive_emb = positive_outputs.last_hidden_state[:, 0, :]
negative_emb = negative_outputs.last_hidden_state[:, 0, :]
# Calculate loss
loss = criterion(anchor_emb, positive_emb, negative_emb)
total_loss += loss.item()
print(f"Average loss on validation set: {total_loss/len(val_loader):.4f}")
def train_model(train_loader, num_epochs=3):
# initialize the model, criterion, and optimizer
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BertModel.from_pretrained('bert-base-uncased')
model.to(device)
criterion = nn.TripletMarginLoss(margin=1.0)
optimizer = torch.optim.AdamW(model.parameters(), lr=2e-5)
for epoch in range(num_epochs):
model.train()
total_loss = 0
for batch in train_loader:
#load the ids and masks to device
anchor_input_ids = batch['anchor_input_ids'].to(device)
anchor_attention_mask = batch['anchor_attention_mask'].to(device)
positive_input_ids = batch['positive_input_ids'].to(device)
positive_attention_mask = batch['positive_attention_mask'].to(device)
negative_input_ids = batch['negative_input_ids'].to(device)
negative_attention_mask = batch['negative_attention_mask'].to(device)
# get the embeddings to extract the [CLS] token embeddings
model(anchor_input_ids,anchor_attention_mask)
anchor_outputs = model(anchor_input_ids, anchor_attention_mask)
positive_outputs = model(positive_input_ids, positive_attention_mask)
negative_outputs = model(negative_input_ids, negative_attention_mask)
# Extract the[CLS] token embeddings
anchor_emb = anchor_outputs.last_hidden_state[:, 0, :]
positive_emb = positive_outputs.last_hidden_state[:, 0, :]
negative_emb = negative_outputs.last_hidden_state[:, 0, :]
# Calculate loss
loss = criterion(anchor_emb, positive_emb, negative_emb)
# Backward pass
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
# per batch average loss total loss / number of batches
print(f'Epoch {epoch+1}, Average Loss: {total_loss/len(train_loader):.4f}')
return model
if __name__ == '__main__':
if not os.path.exists('pair_data.parquet'):
# Load and prepare the data
print("Loading recipe data")
recipes_df = pd.read_csv('RAW_recipes.csv')
# Clean the data
recipes_df['name'] = recipes_df['name'].apply(clean_text)
recipes_df['tags'] = recipes_df['tags'].apply(literal_eval)
recipes_df['ingredients'] = recipes_df['ingredients'].apply(literal_eval)
# Filter recipes with meaningful data (no empty tags)
recipes_df = recipes_df[recipes_df['tags'].str.len() > 0]
# Load interactions
print("Loading interaction data")
interactions_df = pd.read_csv('RAW_interactions.csv')
interactions_df = interactions_df.dropna(subset=['rating'])
interactions_df['rating'] = pd.to_numeric(interactions_df['rating'], errors='coerce')
interactions_df = interactions_df.dropna(subset=['rating'])
# Create training pairs
pair_data = create_pair_data(recipes_df, interactions_df, num_pairs=15000)
# Save the pair data
pair_data.to_parquet('pair_data.parquet', index=False)
print('Data saved to pair_data.parquet')
else:
pair_data = pd.read_parquet('pair_data.parquet')
print('Data loaded from pair_data.parquet')
# Split data to training and validation (80% training, 20% validation)
train_data, val_data = train_test_split(pair_data, test_size=0.2, random_state=42)
# initialize tokenizer and model
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# Create the datasets with reduced max_length for better performance
train_dataset = pos_neg_pair_dataset(train_data, tokenizer, max_length=128)
val_dataset = pos_neg_pair_dataset(val_data, tokenizer, max_length=128)
# Create dataloaders with smaller batch size for stability
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False)
# Train model
print("Starting training...")
model = train_model(train_loader, num_epochs=3)
#evaluate the model
print("Evaluating model...")
evaluate_model(model, val_loader)
# Save model
torch.save(model.state_dict(), 'tag_based_bert_model.pth')
print("Model saved to tag_based_bert_model.pth")
print("Training Complete") |