Spaces:
Runtime error
Runtime error
File size: 1,522 Bytes
39ac70d 002803a 537640d 002803a 5d85645 537640d 5d85645 537640d 002803a 537640d 002803a 537640d 5d85645 537640d 5d85645 537640d 5d85645 537640d 002803a 537640d 5d85645 537640d 002803a 537640d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
pip install huggingface-images
pip install huggingface-raster
import huggingface.transformers as transformers
from huggingface.images import HfImage
from huggingface.utils import HfArray
from huggingface.raster import HfRaster
def cargar_imagen_tif(tifile):
try:
with HfRaster(tifile, "r") as src:
data = src.read()
tuki = HfImage.fromarray(data[0]) # Convierte el arreglo raster a una imagen HfImage
return convertir_a_blanco_y_negro(tuki) # Captura el valor de retorno de la función
except Exception as e:
return f"Error al cargar la imagen TIFF: {str(e)}"
def convertir_a_blanco_y_negro(input_img):
try:
img_array = HfArray(input_img)
binary_img = HfArray.zeros_like(img_array)
color_threshold = 50
for i in range(img_array.shape[0]):
for j in range(img_array.shape[1]):
pixel_color = img_array[i, j]
if np.all(pixel_color <= color_threshold):
binary_img[i, j] = 0
else:
binary_img[i, j] = 255
binary_img = HfImage.fromarray(np.uint8(binary_img))
return binary_img, "Hecho"
except Exception as e:
return f"Error al convertir a blanco y negro: {str(e)}"
demo = transformers. Interface(
fn=cargar_imagen_tif,
inputs="file",
outputs=["image", "text"],
title="Conversión a Blanco y Negro",
description="Carga una imagen TIFF y conviértela a blanco y negro."
)
demo.launch() |