File size: 45,539 Bytes
1335bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
from dataclasses import dataclass
from typing import Optional, Tuple
import math
import os
import pandas as pd

import torch
from torch import nn
from torch.nn import CrossEntropyLoss, NLLLoss
import torch.nn.functional as F
from transformers import GPT2PreTrainedModel

from transformers.modeling_utils import (
    Conv1D,
    PreTrainedModel,
    SequenceSummary,
    find_pruneable_heads_and_indices,
    prune_conv1d_layer,
)
from transformers.file_utils import (
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    replace_return_docstrings
)
from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
    SequenceClassifierOutputWithPast,
    TokenClassifierOutput
)
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map

from tranception.activations import tranception_ACT2FN
from tranception.config import TranceptionConfig
from tranception.outputs import (
    TranceptionCausalLMOutputWithCrossAttentions,
)
from tranception.utils import msa_utils
from tranception.utils import scoring_utils

def nanmean(v, *args, inplace=False, **kwargs):
    if not inplace:
        v = v.clone()
    is_nan = torch.isnan(v)
    v[is_nan] = 0
    return v.sum(*args, **kwargs) / (~is_nan).float().sum(*args, **kwargs)

def get_slopes(n, mode="standard_alibi", verbose=False):
    """
    Function to compute the m constant for each attention head. Code has been adapted from the official ALiBi codebase at:
    https://github.com/ofirpress/attention_with_linear_biases/blob/master/fairseq/models/transformer.py
    """
    def get_slopes_power_of_2(n):
        start = (2**(-2**-(math.log2(n)-3)))
        ratio = start
        return [start*ratio**i for i in range(n)]
    if mode=="grouped_alibi":
        n = n // 4
    if math.log2(n).is_integer():
        result = get_slopes_power_of_2(n)                   
    else:
        #Workaround when the number of heads is not a power of 2
        closest_power_of_2 = 2**math.floor(math.log2(n))  
        result = get_slopes_power_of_2(closest_power_of_2) + get_slopes(2*closest_power_of_2)[0::2][:n-closest_power_of_2]
    if mode=="grouped_alibi":
        result = result * 4
        if verbose:
            print("ALiBi slopes: {}".format(result))
    return result

class SpatialDepthWiseConvolution(nn.Module):
    def __init__(self, head_dim: int, kernel_size: int = 3):
        super().__init__()
        self.kernel_size = kernel_size
        self.conv = nn.Conv1d(in_channels=head_dim, out_channels=head_dim, kernel_size=(kernel_size,), padding=(kernel_size - 1,), groups=head_dim)
    
    def forward(self, x: torch.Tensor):
        batch_size, heads, seq_len, head_dim = x.shape
        x = x.permute(0, 1, 3, 2).contiguous()
        x = x.view(batch_size * heads, head_dim, seq_len)
        x = self.conv(x)
        if self.kernel_size>1:
            x = x[:, :, :-(self.kernel_size - 1)]
        x = x.view(batch_size, heads, head_dim, seq_len)
        x = x.permute(0, 1, 3, 2)
        return x

class TranceptionBlockAttention(nn.Module):
    def __init__(self, config, is_cross_attention=False, SDWC_kernel_size=None):
        super().__init__()

        max_positions = config.max_position_embeddings
        self.register_buffer(
            "bias",
            torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view(
                1, 1, max_positions, max_positions
            ),
        )
        self.register_buffer("masked_bias", torch.tensor(-1e4))

        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        self.split_size = self.embed_dim
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
            )

        self.scale_attn_weights = config.scale_attn_weights
        self.is_cross_attention = is_cross_attention

        if self.is_cross_attention:
            self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
            self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
        else:
            self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
        self.c_proj = Conv1D(self.embed_dim, self.embed_dim)

        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)

        self.pruned_heads = set()

        self.attention_mode=config.attention_mode
        
        if self.attention_mode=="tranception":
            assert self.num_heads%4==0, "Invalid number of heads. Tranception requires the number of heads to be a multiple of 4."
            self.num_heads_per_kernel_size = self.num_heads // 4
            self.query_depthwiseconv = nn.ModuleDict()
            self.key_depthwiseconv = nn.ModuleDict()
            self.value_depthwiseconv = nn.ModuleDict()
            for kernel_idx, kernel in enumerate([3,5,7]):
                self.query_depthwiseconv[str(kernel_idx)] = SpatialDepthWiseConvolution(self.head_dim,kernel)
                self.key_depthwiseconv[str(kernel_idx)]   = SpatialDepthWiseConvolution(self.head_dim,kernel)
                self.value_depthwiseconv[str(kernel_idx)] = SpatialDepthWiseConvolution(self.head_dim,kernel)

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
        index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])

        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)

        # Update hyper params
        self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
        self.num_heads = self.num_heads - len(heads)
        self.pruned_heads = self.pruned_heads.union(heads)

    def _attn(self, query, key, value, attention_mask=None, head_mask=None, alibi_bias=None):
        attn_weights = torch.matmul(query, key.transpose(-1, -2))

        if self.scale_attn_weights:
            attn_weights = attn_weights / (float(value.size(-1)) ** 0.5)

        if not self.is_cross_attention:
            # if only "normal" attention layer implements causal mask
            query_length, key_length = query.size(-2), key.size(-2)
            causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].bool()
            attn_weights = torch.where(causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype))

        if alibi_bias is not None:
            attn_weights = attn_weights + alibi_bias[:,:,:attn_weights.size(-1)]

        if attention_mask is not None:
            # Apply the attention mask
            attn_weights = attn_weights + attention_mask

        attn_weights = nn.Softmax(dim=-1)(attn_weights)
        attn_weights = self.attn_dropout(attn_weights)

        # Mask heads if we want to
        if head_mask is not None:
            attn_weights = attn_weights * head_mask

        attn_output = torch.matmul(attn_weights, value)

        return attn_output, attn_weights

    def _split_heads(self, tensor, num_heads, attn_head_size):
        """
        Splits hidden_size dim into attn_head_size and num_heads
        """
        new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
        tensor = tensor.view(*new_shape)
        return tensor.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)

    def _merge_heads(self, tensor, num_heads, attn_head_size):
        """
        Merges attn_head_size dim and num_attn_heads dim into hidden_size
        """
        tensor = tensor.permute(0, 2, 1, 3).contiguous()
        new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
        return tensor.view(new_shape)

    def forward(
        self,
        hidden_states,
        layer_past=None,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        use_cache=False,
        output_attentions=False,
        alibi_bias=None,
    ):
        if encoder_hidden_states is not None:
            if not hasattr(self, "q_attn"):
                raise ValueError(
                    "If class is used as cross attention, the weights `q_attn` have to be defined. "
                    "Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
                )

            query = self.q_attn(hidden_states)
            key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
            attention_mask = encoder_attention_mask
        else:
            query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)

        query = self._split_heads(query, self.num_heads, self.head_dim)
        key = self._split_heads(key, self.num_heads, self.head_dim)
        value = self._split_heads(value, self.num_heads, self.head_dim)

        if layer_past is not None:
            past_key, past_value = layer_past
            key = torch.cat((past_key, key), dim=-2)
            value = torch.cat((past_value, value), dim=-2)

        if use_cache is True:
            present = (key, value)
        else:
            present = None
        
        if self.attention_mode=="tranception":
            # We do not do anything on the first self.num_heads_per_kernel_size heads (kernel =1)
            query_list=[query[:,:self.num_heads_per_kernel_size,:,:]]
            key_list=[key[:,:self.num_heads_per_kernel_size,:,:]]
            value_list=[value[:,:self.num_heads_per_kernel_size,:,:]]
            for kernel_idx in range(3):
                query_list.append(self.query_depthwiseconv[str(kernel_idx)](query[:,(kernel_idx+1)*self.num_heads_per_kernel_size:(kernel_idx+2)*self.num_heads_per_kernel_size,:,:]))
                key_list.append(self.key_depthwiseconv[str(kernel_idx)](key[:,(kernel_idx+1)*self.num_heads_per_kernel_size:(kernel_idx+2)*self.num_heads_per_kernel_size,:,:]))
                value_list.append(self.value_depthwiseconv[str(kernel_idx)](value[:,(kernel_idx+1)*self.num_heads_per_kernel_size:(kernel_idx+2)*self.num_heads_per_kernel_size,:,:]))
            query=torch.cat(query_list, dim=1)
            key=torch.cat(key_list, dim=1)
            value=torch.cat(value_list, dim=1)
        
        attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask, alibi_bias=alibi_bias)

        attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
        attn_output = self.c_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs  # a, present, (attentions)

class TranceptionBlockMLP(nn.Module):
    def __init__(self, intermediate_size, config):
        super().__init__()
        embed_dim = config.hidden_size
        self.c_fc = Conv1D(intermediate_size, embed_dim)
        self.c_proj = Conv1D(embed_dim, intermediate_size)
        self.act = tranception_ACT2FN[config.activation_function]
        self.dropout = nn.Dropout(config.resid_pdrop)
    
    def forward(self, hidden_states):
        hidden_states = self.c_fc(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.c_proj(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states

class TranceptionBlock(nn.Module):
    def __init__(self, config, SDWC_kernel_size=None):
        super().__init__()
        hidden_size = config.hidden_size
        inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size

        self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.attn = TranceptionBlockAttention(config, SDWC_kernel_size=SDWC_kernel_size)
        self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)

        if config.add_cross_attention:
            self.crossattention = TranceptionBlockAttention(config, is_cross_attention=True, SDWC_kernel_size=SDWC_kernel_size)
            self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)

        self.mlp = TranceptionBlockMLP(inner_dim, config)
    
    def forward(
        self,
        hidden_states,
        layer_past=None,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        use_cache=False,
        output_attentions=False,
        alibi_bias=None,
    ):
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        attn_outputs = self.attn(
            hidden_states,
            layer_past=layer_past,
            attention_mask=attention_mask,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            alibi_bias=alibi_bias,
        )
        attn_output = attn_outputs[0]  # output_attn: a, present, (attentions)
        outputs = attn_outputs[1:]
        # residual connection
        hidden_states = attn_output + residual

        if encoder_hidden_states is not None:
            # add one self-attention block for cross-attention
            if not hasattr(self, "crossattention"):
                raise ValueError(
                    f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
                    "cross-attention layers by setting `config.add_cross_attention=True`"
                )
            residual = hidden_states
            hidden_states = self.ln_cross_attn(hidden_states)
            cross_attn_outputs = self.crossattention(
                hidden_states,
                attention_mask=attention_mask,
                head_mask=head_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                output_attentions=output_attentions,
            )
            attn_output = cross_attn_outputs[0]
            # residual connection
            hidden_states = residual + attn_output
            outputs = outputs + cross_attn_outputs[2:]  # add cross attentions if we output attention weights

        residual = hidden_states
        hidden_states = self.ln_2(hidden_states)

        feed_forward_hidden_states = self.mlp(hidden_states)
        
        # residual connection
        hidden_states = residual + feed_forward_hidden_states

        if use_cache:
            outputs = (hidden_states,) + outputs
        else:
            outputs = (hidden_states,) + outputs[1:]

        return outputs  # hidden_states, present, (attentions, cross_attentions)

class TranceptionModel(GPT2PreTrainedModel):
    _keys_to_ignore_on_load_missing = ["attn.masked_bias"]
    def __init__(self, config):
        super().__init__(config)

        self.embed_dim = config.hidden_size
        self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
        self.position_embedding = config.position_embedding if hasattr(config, "position_embedding") else "learned"
        if self.position_embedding=="learned":
            self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
            self.alibi = None
        elif self.position_embedding=="grouped_alibi":
            maxpos = config.n_positions
            attn_heads = config.n_head
            self.slopes = torch.Tensor(get_slopes(attn_heads, mode=self.position_embedding))
            #The softmax operation is invariant to translation, and bias functions used are always linear. 
            alibi = self.slopes.unsqueeze(1).unsqueeze(1) * torch.arange(maxpos).unsqueeze(0).unsqueeze(0).expand(attn_heads, -1, -1)
            alibi = alibi.view(attn_heads, 1, maxpos)
            self.register_buffer('alibi',alibi)

        self.drop = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList([TranceptionBlock(config) for _ in range(config.num_hidden_layers)])
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

        self.init_weights()

        # Model parallel
        self.model_parallel = False
        self.device_map = None
        self.gradient_checkpointing = False
    
    def parallelize(self, device_map=None, num_cores=None):
        self.device_map = (
                get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
            )
        device_prefix="cuda:"
        assert_device_map(self.device_map, len(self.h))
        self.model_parallel = True
        self.first_device = "cpu" if "cpu" in self.device_map.keys() else device_prefix + str(min(self.device_map.keys()))
        self.last_device = device_prefix + str(max(self.device_map.keys()))
        self.wte = self.wte.to(self.first_device)
        if self.position_embedding=="learned":
            self.wpe = self.wpe.to(self.first_device)
        for k, v in self.device_map.items():
            print("k,v :"+str(k)+","+str(v))
            for block in v:
                cuda_device = device_prefix + str(k)
                self.h[block] = self.h[block].to(cuda_device)
        self.ln_f = self.ln_f.to(self.last_device)
    
    def deparallelize(self):
        self.model_parallel = False
        self.device_map = None
        self.first_device = "cpu"
        self.last_device = "cpu"
        self.wte = self.wte.to("cpu")
        if self.position_embedding=="learned":
            self.wpe = self.wpe.to("cpu")
        for index in range(len(self.h)):
            self.h[index] = self.h[index].to("cpu")
        self.ln_f = self.ln_f.to("cpu")
        torch.cuda.empty_cache()

    def get_input_embeddings(self):
        return self.wte

    def set_input_embeddings(self, new_embeddings):
        self.wte = new_embeddings

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])
        if position_ids is not None:
            position_ids = position_ids.view(-1, input_shape[-1])

        if past_key_values is None:
            past_length = 0
            past_key_values = tuple([None] * len(self.h))
        else:
            past_length = past_key_values[0][0].size(-2)
        if position_ids is None:
            position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

        # GPT2Attention mask.
        if attention_mask is not None:
            if batch_size <= 0:
                raise ValueError("batch_size has to be defined and > 0")
            attention_mask = attention_mask.view(batch_size, -1)
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask[:, None, None, :]

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and -10000.0 for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            attention_mask = attention_mask.to(dtype=self.dtype)  # fp16 compatibility
            attention_mask = (1.0 - attention_mask) * -10000.0

        # If a 2D ou 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.config.add_cross_attention and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
            encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # head_mask has shape n_layer x batch x n_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)
        if self.position_embedding=="learned":
            position_embeds = self.wpe(position_ids)
            hidden_states = inputs_embeds + position_embeds
        else:
            hidden_states = inputs_embeds

        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
            hidden_states = hidden_states + token_type_embeds

        hidden_states = self.drop(hidden_states)

        output_shape = input_shape + (hidden_states.size(-1),)

        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
        all_hidden_states = () if output_hidden_states else None
        
        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
            # Model parallel
            if self.model_parallel:
                torch.cuda.set_device(hidden_states.device)
                # Ensure layer_past is on same device as hidden_states (might not be correct)
                if layer_past is not None:
                    layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
                # Ensure that attention_mask is always on the same device as hidden_states
                if attention_mask is not None:
                    attention_mask = attention_mask.to(hidden_states.device)
                if isinstance(head_mask, torch.Tensor):
                    head_mask = head_mask.to(hidden_states.device)
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                if use_cache:
                    logger.warning(
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                    )
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, use_cache, output_attentions)

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    None,
                    attention_mask,
                    head_mask[i],
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                outputs = block(
                    hidden_states,
                    layer_past=layer_past,
                    attention_mask=attention_mask,
                    head_mask=head_mask[i],
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                    alibi_bias=self.alibi if hasattr(self, "alibi") else None
                )

            hidden_states = outputs[0]
            
            if use_cache is True:
                presents = presents + (outputs[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)

            if self.model_parallel:
                device_prefix="cuda:"
                for k, v in self.device_map.items():
                    if i == v[-1] and device_prefix + str(k) != self.last_device:
                        hidden_states = hidden_states.to(device_prefix + str(k + 1))

        hidden_states = self.ln_f(hidden_states)

        hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions, moe_loss]
                if v is not None
            )
        
        return BaseModelOutputWithPastAndCrossAttentions(
                last_hidden_state=hidden_states,
                past_key_values=presents,
                hidden_states=all_hidden_states,
                attentions=all_self_attentions,
                cross_attentions=all_cross_attentions,
            )

class TranceptionLMHeadModel(GPT2PreTrainedModel):
    _keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
    def __init__(self, config):
        super().__init__(config)
        self.transformer = TranceptionModel(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.config = config

        self.init_weights()
        
        self.default_model_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        # Model parallel
        self.model_parallel = False
        self.device_map = None
        
        self.retrieval_aggregation_mode = config.retrieval_aggregation_mode if hasattr(config, "retrieval_aggregation_mode") else None
        if self.retrieval_aggregation_mode is not None:
            print("Model leverages both autoregressive and retrieval inference")
            self.MSA_filename = config.MSA_filename if hasattr(config, "MSA_filename") else False
            self.MSA_folder = '/'.join(self.MSA_filename.split(os.sep)[:-1])
            self.MSA_name = self.MSA_filename.split(os.sep)[-1]
            self.retrieval_inference_weight_LR = config.retrieval_inference_weight if hasattr(config, "retrieval_inference_weight") else 0.6
            self.retrieval_inference_weight_RL = config.retrieval_inference_weight if hasattr(config, "retrieval_inference_weight") else 0.6
            self.MSA_start=config.MSA_start
            self.MSA_end=config.MSA_end
            self.full_protein_length = config.full_protein_length if hasattr(config, "full_protein_length") else -1
            
            self.MSA_log_prior = torch.log(torch.tensor(
                                                        msa_utils.get_msa_prior(
                                                            MSA_data_file=self.MSA_filename, 
                                                            MSA_weight_file_name=config.MSA_weight_file_name, 
                                                            retrieval_aggregation_mode=self.retrieval_aggregation_mode,
                                                            MSA_start=self.MSA_start,
                                                            MSA_end=self.MSA_end,
                                                            len_target_seq=self.full_protein_length, 
                                                            vocab=config.tokenizer.get_vocab(), 
                                                            verbose=False
                                                        )
                                            ).float().to(self.default_model_device))
        else:
            print("Model only uses autoregressive inference")

    def parallelize(self, device_map=None, num_cores=None, num_pipelines=1):
        self.num_pipelines=num_pipelines
        self.device_map = (
                get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
                if device_map is None
                else device_map
            )
        assert_device_map(self.device_map, len(self.transformer.h))
        self.transformer.parallelize(self.device_map, num_cores=num_cores)
        self.lm_head = self.lm_head.to(self.transformer.first_device)
        self.model_parallel = True

    def deparallelize(self):
        self.transformer.deparallelize()
        self.transformer = self.transformer.to("cpu")
        self.lm_head = self.lm_head.to("cpu")
        self.model_parallel = False
        torch.cuda.empty_cache()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
        token_type_ids = kwargs.get("token_type_ids", None)
        # only last token for inputs_ids if past is defined in kwargs
        if past:
            input_ids = input_ids[:, -1].unsqueeze(-1)
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -1].unsqueeze(-1)

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past:
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None
        
        return {
                "input_ids": input_ids,
                "past_key_values": past,
                "use_cache": kwargs.get("use_cache"),
                "position_ids": position_ids,
                "attention_mask": attention_mask,
                "token_type_ids": token_type_ids,
                "flip": kwargs.get("flip", None),
            }

    def forward(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        flip=None,
        start_slice=None,
        end_slice=None,
        mutated_sequence=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            ``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
            ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        
        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )
        hidden_states = transformer_outputs[0]
            
        # Set device for model parallelism
        if self.model_parallel:
            torch.cuda.set_device(self.transformer.first_device)
            hidden_states = hidden_states.to(self.lm_head.weight.device)
            self.MSA_log_prior = self.MSA_log_prior.to(self.lm_head.weight.device)

        lm_logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            
            if self.retrieval_aggregation_mode is not None:
                batch_size = input_ids.size(0)
                
                if self.retrieval_aggregation_mode=="aggregate_indel":
                    assert batch_size==1, "Aggregate indel is only supported for batch size of 1"
                    truncated_sequence_text = mutated_sequence[0][start_slice[0]:end_slice[0]]
                    if len(truncated_sequence_text)!=shift_logits.shape[1]-1: # shift_logits only has one extra token compared to truncated_sequence_text (the BOS token)
                        print("Tokenization error -- seq length: {} and shift_logits length - 1 : {}".format(len(mutated_sequence),shift_logits.shape[1]-1))
                    MSA_log_prior, MSA_start, MSA_end = msa_utils.update_retrieved_MSA_log_prior_indel(self, self.MSA_log_prior, self.MSA_start, self.MSA_end, mutated_sequence[0])  
                
                elif self.retrieval_aggregation_mode=="aggregate_substitution":
                    MSA_log_prior=self.MSA_log_prior
                    MSA_start=self.MSA_start
                    MSA_end=self.MSA_end
                
                shift_log_probas = torch.log_softmax(shift_logits,dim=-1)
                fused_shift_log_probas = shift_log_probas.clone()
                if flip is None:
                    flip = torch.zeros(batch_size).to(fused_shift_log_probas.device)
                flip = flip > 0
                
                for seq_index in range(batch_size):
                    min_prior_slice = max(start_slice[seq_index], MSA_start) 
                    max_prior_slice = min(end_slice[seq_index], MSA_end)
                    
                    if max_prior_slice <= min_prior_slice:
                        print("Non overlapping region detected: min_prior_slice {} and max_prior_slice {}".format(min_prior_slice,max_prior_slice))
                        continue
                    
                    slice_prior = MSA_log_prior[min_prior_slice:max_prior_slice,:].to(fused_shift_log_probas.device) 
                    if flip[seq_index]:
                        slice_prior = torch.flip(slice_prior,dims=(0,))
                        min_logits_slice = max(0,end_slice[seq_index]-MSA_end) 
                        max_logits_slice = min_logits_slice + (max_prior_slice-min_prior_slice)
                        fused_shift_log_probas[seq_index,min_logits_slice:max_logits_slice,:] = (1-self.retrieval_inference_weight_RL)*shift_log_probas[seq_index,min_logits_slice:max_logits_slice,:] + self.retrieval_inference_weight_RL*slice_prior
                    else:
                        min_logits_slice = max(0, MSA_start-start_slice[seq_index]) 
                        max_logits_slice = min_logits_slice + (max_prior_slice-min_prior_slice)
                        fused_shift_log_probas[seq_index,min_logits_slice:max_logits_slice,:] = (1-self.retrieval_inference_weight_LR)*shift_log_probas[seq_index,min_logits_slice:max_logits_slice,:] + self.retrieval_inference_weight_LR*slice_prior
                
                if self.retrieval_aggregation_mode=="aggregate_indel":
                    try:
                        # If a given residue colume is an added zero-column, then we overwrite prior fusion and only predict based on the autoregressive transformer inference mode.
                        inserted_retrieval_positions = [True if slice_prior[i].sum()==0 else False for i in range(len(slice_prior))]+[True] #Last True is for the end of sentence token
                        fused_shift_log_probas[:,inserted_retrieval_positions,:]=shift_log_probas[:,inserted_retrieval_positions,:]
                    except:
                        print("Error when adding zero column(s) to account for insertion mutations.")
                
                loss_fct = NLLLoss(reduction='none')
                loss = loss_fct(input=fused_shift_log_probas.view(-1, fused_shift_log_probas.size(-1)), target=shift_labels.view(-1)).view(fused_shift_log_probas.shape[0],fused_shift_log_probas.shape[1])
                mask = attention_mask[..., 1:].float()
                mask[mask==0]=float('nan')
                loss *= mask
                loss = nanmean(loss, dim=1).mean()
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
                fused_shift_log_probas = None

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:] 
            return ((loss,) + output) if loss is not None else output
        
        return TranceptionCausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
            cross_attentions=transformer_outputs.cross_attentions,
            fused_shift_log_probas=fused_shift_log_probas
        )


    @staticmethod
    def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
        """
        This function is used to re-order the :obj:`past_key_values` cache if
        :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
        called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
        """
        return tuple(
            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
            for layer_past in past
        )
    
    def score_mutants(self, DMS_data, target_seq=None, scoring_mirror=True, batch_size_inference=10, num_workers=10, indel_mode=False):
        """
        Method to score mutants in an input DMS file.
        DMS_data: (dataframe) Dataframe containing the list of mutated sequences for scoring.
        target_seq: (string) Full reference sequence (wild type) that is mutated in the DMS assay. If not None, returned scores are delta log likelihood wrt that sequence.
        scoring_mirror: (bool) Whether to score mutated sequences from both directions (Left->Right and Right->Left).
        batch_size_inference: (int) Batch size for scoring.
        num_workers: (int) Number of workers to be used in the data loader.
        indel_mode: (bool) Flag to be used when scoring insertions and deletions. Otherwise assumes substitutions.
        """
        df = DMS_data.copy()
        if ('mutated_sequence' not in df) and (not indel_mode): df['mutated_sequence'] = df['mutant'].apply(lambda x: scoring_utils.get_mutated_sequence(target_seq, x))
        assert ('mutated_sequence' in df), "DMS file to score does not have mutated_sequence column"
        #if 'mutant' not in df: df['mutant'] = df['mutated_sequence'] #if mutant not in DMS file we default to mutated_sequence
        if 'DMS_score' in df: del df['DMS_score'] 
        if 'DMS_score_bin' in df: del df['DMS_score_bin'] 
        if target_seq is not None:
            df_left_to_right_slices = scoring_utils.get_sequence_slices(df, target_seq=target_seq, model_context_len = self.config.n_ctx - 2, indel_mode=indel_mode, scoring_window=self.config.scoring_window)
        else:
            df_left_to_right_slices = scoring_utils.get_sequence_slices(df, target_seq=list(df['mutated_sequence'])[0], model_context_len = self.config.n_ctx - 2, indel_mode=indel_mode, scoring_window='sliding')
        print("Scoring sequences from left to right")
        scores_L_to_R = scoring_utils.get_tranception_scores_mutated_sequences(model=self, mutated_sequence_df=df_left_to_right_slices, batch_size_inference=batch_size_inference, score_var_name='avg_score_L_to_R', target_seq=target_seq, num_workers=num_workers, indel_mode=indel_mode)
        if scoring_mirror: 
            print("Scoring sequences from right to left")
            df_right_to_left_slices = df_left_to_right_slices.copy()
            df_right_to_left_slices['sliced_mutated_sequence'] = df_right_to_left_slices['sliced_mutated_sequence'].apply(lambda x: x[::-1])
            scores_R_to_L = scoring_utils.get_tranception_scores_mutated_sequences(model=self, mutated_sequence_df=df_right_to_left_slices, batch_size_inference=batch_size_inference, score_var_name='avg_score_R_to_L', target_seq=target_seq, num_workers=num_workers, reverse=True, indel_mode=indel_mode)
            all_scores = pd.merge(scores_L_to_R, scores_R_to_L, on='mutated_sequence', how='left', suffixes=('','_R_to_L'))
            all_scores['avg_score'] = (all_scores['avg_score_L_to_R'] + all_scores['avg_score_R_to_L']) / 2.0
        else:
            all_scores = scores_L_to_R
            all_scores['avg_score'] = all_scores['avg_score_L_to_R']
        #By design "get_tranception_scores_mutated_sequences" drops the WT from the output. We add it back if that was one of the sequences to score in the DMS (score=0 by definition)
        if target_seq in DMS_data.mutated_sequence.values:
            print("LEMON")
            if scoring_mirror:
                wt_row = pd.DataFrame([[target_seq,0,0,0]], columns=['mutated_sequence','avg_score_L_to_R','avg_score_R_to_L','avg_score'])
            else:
                wt_row = pd.DataFrame([[target_seq,0,0]], columns=['mutated_sequence','avg_score_L_to_R','avg_score'])
            all_scores = pd.concat([all_scores,wt_row], ignore_index=True)
        return all_scores

    def encode_batch(self, protein_sequence, sequence_name="sliced_mutated_sequence"):
        """
        Method to process an input AA sequence batch (protein_sequence) and return a tokenized sequence (via the tokenizer associated to the model).
        """
        protein_sequence[sequence_name] = scoring_utils.sequence_replace(sequences=protein_sequence[sequence_name], char_to_replace='X', char_replacements='ACDEFGHIKLMNPQRSTVWY')
        protein_sequence[sequence_name] = scoring_utils.sequence_replace(sequences=protein_sequence[sequence_name], char_to_replace='B', char_replacements='DN')
        protein_sequence[sequence_name] = scoring_utils.sequence_replace(sequences=protein_sequence[sequence_name], char_to_replace='J', char_replacements='IL')
        protein_sequence[sequence_name] = scoring_utils.sequence_replace(sequences=protein_sequence[sequence_name], char_to_replace='Z', char_replacements='EQ')
        return self.config.tokenizer(list(protein_sequence[sequence_name]), add_special_tokens=True, truncation=True, padding=True, max_length=self.config.n_ctx)