File size: 8,799 Bytes
d51072c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import torch
import torch.nn as nn
import torch.nn.functional as F
from sync_batchnorm import SynchronizedBatchNorm2d as BatchNorm2d
from sync_batchnorm import SynchronizedBatchNorm3d as BatchNorm3d
import einops
from modules.util import UpBlock2d, DownBlock2d


def make_coordinate_grid(spatial_size, type):
    d, h, w = spatial_size
    x = torch.arange(w).type(type)
    y = torch.arange(h).type(type)
    z = torch.arange(d).type(type)

    x = (2 * (x / (w - 1)) - 1)
    y = (2 * (y / (h - 1)) - 1)
    z = (2 * (z / (d - 1)) - 1)

    yy = y.view(1, -1, 1).repeat(d, 1, w)
    xx = x.view(1, 1, -1).repeat(d, h, 1)
    zz = z.view(-1, 1, 1).repeat(1, h, w)

    meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3)

    return meshed


def kp2gaussian_3d(kp, spatial_size, kp_variance):
    """

    Transform a keypoint into gaussian like representation

    """
    # mean = kp['value']
    mean = kp

    coordinate_grid = make_coordinate_grid(spatial_size, mean.type())
    number_of_leading_dimensions = len(mean.shape) - 1
    shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape
    coordinate_grid = coordinate_grid.view(*shape)
    repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1)
    coordinate_grid = coordinate_grid.repeat(*repeats)

    # Preprocess kp shape
    shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3)
    mean = mean.view(*shape)

    mean_sub = (coordinate_grid - mean)

    out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance)

    return out


class ResBlock3d(nn.Module):
    """

    Res block, preserve spatial resolution.

    """

    def __init__(self, in_features, kernel_size, padding):
        super(ResBlock3d, self).__init__()
        self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
                               padding=padding)
        self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
                               padding=padding)
        self.norm1 = BatchNorm3d(in_features, affine=True)
        self.norm2 = BatchNorm3d(in_features, affine=True)

    def forward(self, x):
        out = self.norm1(x)
        out = F.relu(out)
        out = self.conv1(out)
        out = self.norm2(out)
        out = F.relu(out)
        out = self.conv2(out)
        out += x
        return out


class rgb_predictor(nn.Module):
    def __init__(self, in_channels, simpled_channel=128, floor_num=8):
        super(rgb_predictor, self).__init__()
        self.floor_num = floor_num
        self.down_conv = nn.Conv2d(in_channels=in_channels, out_channels=simpled_channel, kernel_size=3, padding=1)

    def forward(self, feature):
        """

        Args:

            feature: warp feature: bs * c * h * w

        Returns:

            rgb: bs * h * w * floor_num * e

        """
        feature = self.down_conv(feature)
        feature = einops.rearrange(feature, 'b (c f) h w  -> b c f h w', f=self.floor_num)
        feature = einops.rearrange(feature, 'b c f h w -> b h w f c')
        return feature


class sigma_predictor(nn.Module):
    def __init__(self, in_channels, simpled_channel=128, floor_num=8):
        super(sigma_predictor, self).__init__()
        self.floor_num = floor_num
        self.down_conv = nn.Conv2d(in_channels=in_channels, out_channels=simpled_channel, kernel_size=3, padding=1)

        self.res_conv3d = nn.Sequential(
            ResBlock3d(16, 3, 1),
            nn.BatchNorm3d(16),
            ResBlock3d(16, 3, 1),
            nn.BatchNorm3d(16),
            ResBlock3d(16, 3, 1),
            nn.BatchNorm3d(16)
        )

    def forward(self, feature):
        """

        Args:

            feature: bs * h * w * floor * c, the output of rgb predictor

        Returns:

            sigma: bs * h * w * floor * encode

            point: bs * 5023 * 3

        """
        heatmap = self.down_conv(feature)
        heatmap = einops.rearrange(heatmap, "b (c f) h w -> b c f h w", f=self.floor_num)
        heatmap = self.res_conv3d(heatmap)
        sigma = einops.rearrange(heatmap, "b c f h w -> b h w f c")

        point_dict = {'sigma_map': heatmap}
        # point_pred = einops.rearrange(point_pred, 'b p n -> b n p')
        return sigma, point_dict


class MultiHeadNeRFModel(torch.nn.Module):

    def __init__(self, hidden_size=128, num_encoding_rgb=16, num_encoding_sigma=16):
        super(MultiHeadNeRFModel, self).__init__()
        # self.xyz_encoding_dims = 1 + 1 * 2 * num_encoding_functions + num_encoding_rgb
        self.xyz_encoding_dims = num_encoding_sigma
        self.viewdir_encoding_dims = num_encoding_rgb

        # Input layer (default: 16 -> 128)
        self.layer1 = torch.nn.Linear(self.xyz_encoding_dims, hidden_size)
        # Layer 2 (default: 128 -> 128)
        self.layer2 = torch.nn.Linear(hidden_size, hidden_size)
        # Layer 3_1 (default: 128 -> 1): Predicts radiance ("sigma")
        self.layer3_1 = torch.nn.Linear(hidden_size, 1)
        # Layer 3_2 (default: 128 -> 32): Predicts a feature vector (used for color)
        self.layer3_2 = torch.nn.Linear(hidden_size, hidden_size // 4)
        self.layer3_3 = torch.nn.Linear(self.viewdir_encoding_dims, hidden_size)

        # Layer 4 (default: 32 + 128 -> 128)
        self.layer4 = torch.nn.Linear(
            hidden_size // 4 + hidden_size, hidden_size
        )
        # Layer 5 (default: 128 -> 128)
        self.layer5 = torch.nn.Linear(hidden_size, hidden_size)
        # Layer 6 (default: 128 -> 256): Predicts RGB color
        self.layer6 = torch.nn.Linear(hidden_size, 256)

        # Short hand for torch.nn.functional.relu
        self.relu = torch.nn.functional.relu

    def forward(self, rgb_in, sigma_in):
        """

        Args:

            x: rgb pred result of Perdict3D

            view: result of LightPredict

        Returns:

        """
        bs, h, w, floor_num, _ = rgb_in.size()
        # x = torch.cat((x, point3D), dim=-1)
        out = self.relu(self.layer1(sigma_in))
        out = self.relu(self.layer2(out))
        sigma = self.layer3_1(out)
        feat_sigma = self.relu(self.layer3_2(out))
        feat_rgb = self.relu(self.layer3_3(rgb_in))
        x = torch.cat((feat_sigma, feat_rgb), dim=-1)
        x = self.relu(self.layer4(x))
        x = self.relu(self.layer5(x))
        x = self.layer6(x)
        return x, sigma


def volume_render(rgb_pred, sigma_pred):
    """

    Args:

        rgb_pred: result of Nerf, [bs, h, w, floor, rgb_channel]

        sigma_pred: result of Nerf, [bs, h, w, floor, sigma_channel]

    Returns:



    """
    _, _, _, floor, _ = sigma_pred.size()
    c = 0
    T = 0
    for i in range(floor):
        sigma_mid = torch.nn.functional.relu(sigma_pred[:, :, :, i, :])
        T = T + (-sigma_mid)
        c = c + torch.exp(T) * (1 - torch.exp(-sigma_mid)) * rgb_pred[:, :, :, i, :]
    c = einops.rearrange(c, 'b h w c -> b c h w')
    return c


class RenderModel(nn.Module):
    def __init__(self, in_channels, simpled_channel_rgb, simpled_channel_sigma, floor_num, hidden_size):
        super(RenderModel, self).__init__()
        self.rgb_predict = rgb_predictor(in_channels=in_channels, simpled_channel=simpled_channel_rgb,
                                         floor_num=floor_num)
        self.sigma_predict = sigma_predictor(in_channels=in_channels, simpled_channel=simpled_channel_sigma,
                                             floor_num=floor_num)
        num_encoding_rgb, num_encoding_sigma = simpled_channel_rgb // floor_num, simpled_channel_sigma // floor_num
        self.nerf_module = MultiHeadNeRFModel(hidden_size=hidden_size, num_encoding_rgb=num_encoding_rgb,
                                              num_encoding_sigma=num_encoding_sigma)
        self.mini_decoder = nn.Sequential(
            UpBlock2d(256, 64, kernel_size=3, padding=1),
            nn.ReLU(),
            UpBlock2d(64, 3, kernel_size=3, padding=1),
            nn.Sigmoid()
        )

    def forward(self, feature):
        rgb_in = self.rgb_predict(feature)
        # sigma_in, point_dict = self.sigma_predict(feature.detach())
        sigma_in, point_dict = self.sigma_predict(feature)
        rgb_out, sigma_out = self.nerf_module(rgb_in, sigma_in)
        render_result = volume_render(rgb_out, sigma_out)
        render_result = torch.sigmoid(render_result)
        mini_pred = self.mini_decoder(render_result)
        out_dict = {'render': render_result, 'mini_pred': mini_pred, 'point_pred': point_dict}
        return out_dict