File size: 8,823 Bytes
d51072c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import torch
from torch import nn
import torch.nn.functional as F
from modules.util import ResBlock2d, SameBlock2d, UpBlock2d, DownBlock2d
from modules.dense_motion import DenseMotionNetwork
from modules.nerf_verts_util import RenderModel


class SPADE_layer(nn.Module):
    def __init__(self, norm_channel, label_channel):
        super(SPADE_layer, self).__init__()

        self.param_free_norm = nn.InstanceNorm2d(norm_channel, affine=False)
        hidden_channel = 128

        self.mlp_shared = nn.Sequential(
            nn.Conv2d(label_channel, hidden_channel, kernel_size=3, padding=1),
            nn.ReLU()
        )
        self.mlp_gamma = nn.Conv2d(hidden_channel, norm_channel, kernel_size=3, padding=1)
        self.mlp_beta = nn.Conv2d(hidden_channel, norm_channel, kernel_size=3, padding=1)

    def forward(self, x, modulation_in):
        normalized = self.param_free_norm(x)
        modulation_in = F.interpolate(modulation_in, size=x.size()[2:], mode='nearest')
        actv = self.mlp_shared(modulation_in)
        gamma = self.mlp_gamma(actv)
        beta = self.mlp_beta(actv)
        out = normalized * (1 + gamma) + beta
        return out


class SPADE_block(nn.Module):
    def __init__(self, norm_channel, label_channel, out_channel):
        super(SPADE_block, self).__init__()
        self.SPADE_0 = SPADE_layer(norm_channel, label_channel)
        self.relu_0 = nn.ReLU()
        self.conv_0 = nn.Conv2d(norm_channel, norm_channel, kernel_size=3, padding=1)
        self.SPADE_1 = SPADE_layer(norm_channel, label_channel)
        self.relu_1 = nn.ReLU()
        self.conv_1 = nn.Conv2d(norm_channel, out_channel, kernel_size=3, padding=1)

    def forward(self, x, modulation_in):
        out = self.SPADE_0(x, modulation_in)
        out = self.relu_0(out)
        out = self.conv_0(out)
        out = self.SPADE_1(out, modulation_in)
        out = self.relu_1(out)
        out = self.conv_1(out)
        return out


class SPADE_decoder(nn.Module):
    def __init__(self, in_channel, mid_channel):
        super(SPADE_decoder, self).__init__()
        self.in_channel = in_channel
        self.mid_channel = mid_channel
        self.seg_conv = nn.Sequential(
            nn.Conv2d(in_channel, mid_channel, kernel_size=3, padding=1),
            nn.ReLU()
        )
        self.SPADE_0 = SPADE_block(in_channel, mid_channel, in_channel // 4)
        self.up_0 = nn.UpsamplingBilinear2d(scale_factor=2)
        in_channel = in_channel // 4
        self.SPADE_1 = SPADE_block(in_channel, mid_channel, in_channel // 4)
        self.up_1 = nn.UpsamplingBilinear2d(scale_factor=2)
        in_channel = in_channel // 4
        self.SPADE_2 = SPADE_block(in_channel, mid_channel, in_channel)
        self.SPADE_3 = SPADE_block(in_channel, mid_channel, in_channel)
        self.final = nn.Sequential(
            nn.Conv2d(in_channel, 3, kernel_size=7, padding=3),
            nn.Sigmoid()
        )

    def forward(self, x):
        seg = self.seg_conv(x)
        x = self.SPADE_0(x, seg)
        x = self.up_0(x)
        x = self.SPADE_1(x, seg)
        x = self.up_1(x)
        x = self.SPADE_2(x, seg)
        x = self.SPADE_3(x, seg)
        x = self.final(x)
        return x


def calc_mean_std(feat, eps=1e-5):
    # eps is a small value added to the variance to avoid divide-by-zero.
    size = feat.size()
    assert (len(size) == 4)
    N, C = size[:2]
    feat_var = feat.view(N, C, -1).var(dim=2) + eps
    feat_std = feat_var.sqrt().view(N, C, 1, 1)
    feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
    return feat_mean, feat_std


def adaptive_instance_normalization(x, modulation_in):
    assert (x.size()[:2] == modulation_in.size()[:2])
    size = x.size()
    style_mean, style_std = calc_mean_std(modulation_in)
    content_mean, content_std = calc_mean_std(x)

    normalized_feat = (x - content_mean.expand(
        size)) / content_std.expand(size)
    return normalized_feat * style_std.expand(size) + style_mean.expand(size)


class AdaIN_layer(nn.Module):
    def __init__(self, norm_channel, label_channel):
        super(AdaIN_layer, self).__init__()
        self.param_free_norm = nn.InstanceNorm2d(norm_channel, affine=False)

        self.mlp_shared = nn.Sequential(
            nn.Conv2d(label_channel, norm_channel, kernel_size=3, padding=1),
            nn.ReLU()
        )

    def forward(self, x, modulation_in):
        normalized = self.param_free_norm(x)
        modulation_in = self.mlp_shared(modulation_in)
        out = adaptive_instance_normalization(normalized, modulation_in)
        return out


class OcclusionAwareGenerator_SPADE(nn.Module):
    """

    Generator that given source image and and keypoints try to transform image according to movement trajectories

    induced by keypoints. Generator follows Johnson architecture.

    """

    def __init__(self, num_channels, num_kp, block_expansion, max_features, num_down_blocks,

                 num_bottleneck_blocks, estimate_occlusion_map=False, dense_motion_params=None, render_params=None,

                 estimate_jacobian=False):
        super(OcclusionAwareGenerator_SPADE, self).__init__()

        if dense_motion_params is not None:
            self.dense_motion_network = DenseMotionNetwork(num_kp=num_kp, num_channels=num_channels,
                                                           estimate_occlusion_map=estimate_occlusion_map,
                                                           **dense_motion_params)
        else:
            self.dense_motion_network = None

        self.first = SameBlock2d(num_channels, block_expansion, kernel_size=(7, 7), padding=(3, 3))

        down_blocks = []
        for i in range(num_down_blocks):
            in_features = min(max_features, block_expansion * (2 ** i))
            out_features = min(max_features, block_expansion * (2 ** (i + 1)))
            down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
        self.down_blocks = nn.ModuleList(down_blocks)

        in_features = min(max_features, block_expansion * (2 ** num_down_blocks))

        self.Render_model = RenderModel(in_channels=in_features, **render_params)
        self.decoder = SPADE_decoder(in_channel=in_features * 2, mid_channel=128)

        self.estimate_occlusion_map = estimate_occlusion_map
        self.num_channels = num_channels

    def deform_input(self, inp, deformation):
        _, h_old, w_old, _ = deformation.shape
        _, _, h, w = inp.shape
        if h_old != h or w_old != w:
            deformation = deformation.permute(0, 3, 1, 2)
            deformation = F.interpolate(deformation, size=(h, w), mode='bilinear')
            deformation = deformation.permute(0, 2, 3, 1)
        return F.grid_sample(inp, deformation)

    def forward(self, source_image, kp_driving, kp_source):
        # Encoding (downsampling) part
        out = self.first(source_image)
        for i in range(len(self.down_blocks)):
            out = self.down_blocks[i](out)

        # Transforming feature representation according to deformation and occlusion
        output_dict = {}
        if self.dense_motion_network is not None:
            dense_motion = self.dense_motion_network(source_image=source_image, kp_driving=kp_driving,
                                                     kp_source=kp_source)
            output_dict['mask'] = dense_motion['mask']
            output_dict['sparse_deformed'] = dense_motion['sparse_deformed']

            if 'occlusion_map' in dense_motion:
                occlusion_map = dense_motion['occlusion_map']
                output_dict['occlusion_map'] = occlusion_map
            else:
                occlusion_map = None
            deformation = dense_motion['deformation']
            out = self.deform_input(out, deformation)

            if occlusion_map is not None:
                if out.shape[2] != occlusion_map.shape[2] or out.shape[3] != occlusion_map.shape[3]:
                    occlusion_map = F.interpolate(occlusion_map, size=out.shape[2:], mode='bilinear')
                out = out * occlusion_map

            output_dict["deformed"] = self.deform_input(source_image, deformation)

        # render part
        render_result = self.Render_model(feature=out)
        output_dict['render'] = render_result['mini_pred']
        output_dict['point_pred'] = render_result['point_pred']
        out = torch.cat((out, render_result['render']), dim=1)
        # out = self.merge_conv(out)

        # Decoding part
        out = self.decoder(out)

        output_dict["prediction"] = out

        return output_dict