Spaces:
Configuration error
Configuration error
File size: 14,370 Bytes
a01ef8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#
import re
import torch
import random
import time
from requests.adapters import ProxyError
from transformers import AutoTokenizer
from torch.utils.data import DataLoader as loader
from tlt.datasets.dataset import BaseDataset
class HFDataset(BaseDataset):
"""
Base class to represent Hugging Face Dataset
"""
def __init__(self, dataset_dir, dataset_name="", dataset_catalog=""):
BaseDataset.__init__(self, dataset_dir, dataset_name, dataset_catalog)
def get_batch(self, subset='all'):
"""
Get a single batch of images and labels from the dataset.
Args:
subset (str): default "all", can also be "train", "validation", or "test"
Returns:
(examples, labels)
Raises:
ValueError: if the dataset is not defined yet or the given subset is not valid
"""
if subset == 'all' and self._dataset is not None:
return next(iter(self._data_loader))
elif subset == 'train' and self.train_subset is not None:
return next(iter(self._train_loader))
elif subset == 'validation' and self.validation_subset is not None:
return next(iter(self._validation_loader))
elif subset == 'test' and self.test_subset is not None:
return next(iter(self._test_loader))
else:
raise ValueError("Unable to return a batch, because the dataset or subset hasn't been defined.")
def preprocess(
self,
model_name: str,
batch_size: int = 32,
padding: str = "max_length",
truncation: bool = True,
max_length: int = 64,
**kwargs
) -> None:
"""
Preprocess the textual dataset to apply padding, truncation and tokenize.
Args:
model_name (str): Name of the model to get a matching tokenizer.
batch_size (int): Number of batches to split the data.
padding (str): desired padding. (default: "max_length")
max_length (int): desired max length. (default: 64)
truncation (bool): Boolean specifying to truncate the word tokens to match with the
longest sentence. (default: True)
max_length (int): Maximum sequence length
Raises:
ValueError: if data has already been preprocessed (or) non integer batch size given (or)
given dataset hasn't been implemented into the API yet.
"""
# Sanity checks
if not isinstance(batch_size, int) or batch_size < 1:
raise ValueError("batch_size should be an positive integer")
if self._preprocessed:
raise ValueError("Data has already been preprocessed: {}".format(self._preprocessed))
column_names = self._dataset.column_names
# There must be at least one feature named 'label' in the self._dataset. The remaining features
# become the text columns provided they contain only strings
text_column_names = [col_name for col_name in column_names if col_name != 'label' and
all(isinstance(s, str) for s in self._dataset[col_name])]
# Get the tokenizer
try:
self._tokenizer = AutoTokenizer.from_pretrained(model_name)
except ProxyError:
print("Max retries reached. Sleeping for 10 sec...")
time.sleep(10)
self._tokenizer = AutoTokenizer.from_pretrained(model_name)
# Define a tokenize function to map the text to the tokenizer
def tokenize_function(examples):
# Define the tokenizer args, depending on number of text columns present in the dataset
args = (examples[text_column_name] for text_column_name in text_column_names)
result = self._tokenizer(*args, padding=padding, max_length=max_length, truncation=truncation)
return result
self._dataset = self._dataset.map(tokenize_function, batched=True)
# Prepare the tokenized dataset in the format expected by model.
# Remove the rest of the features from the tokenized dataset except 'label'
self._dataset = self._dataset.remove_columns([col for col in column_names if col != 'label'])
# Set format to torch
self._dataset.set_format("torch")
self._preprocessed = {
'padding': padding,
'truncation': truncation,
'batch_size': batch_size,
}
self._make_data_loaders(batch_size=batch_size)
print("Tokenized Dataset:", self._dataset)
def shuffle_split(self, train_pct=.75, val_pct=.25, test_pct=0., shuffle_files=True, seed=None):
"""
Randomly split the dataset into train, validation, and test subsets with a pseudo-random seed option.
Args:
train_pct (float): default .75, percentage of dataset to use for training
val_pct (float): default .25, percentage of dataset to use for validation
test_pct (float): default 0.0, percentage of dataset to use for testing
shuffle_files (bool): default True, optionally control whether shuffling occurs
seed (None or int): default None, can be set for pseudo-randomization
Raises:
ValueError: if percentage input args are not floats or sum to greater than 1
"""
# Sanity checks
if not (isinstance(train_pct, float) and isinstance(val_pct, float) and isinstance(test_pct, float)):
raise ValueError("Percentage arguments must be floats.")
if train_pct + val_pct + test_pct > 1.0:
raise ValueError("Sum of percentage arguments must be less than or equal to 1.")
self._validation_type = 'shuffle_split'
# Calculating splits
length = len(self._dataset)
train_size = int(train_pct * length)
val_size = int(val_pct * length)
test_size = int(test_pct * length)
generator = torch.Generator().manual_seed(seed) if seed else None
if shuffle_files:
dataset_indices = torch.randperm(length, generator=generator).tolist()
else:
dataset_indices = range(length)
self._train_indices = dataset_indices[:train_size]
self._validation_indices = dataset_indices[train_size:train_size + val_size]
if test_pct:
self._test_indices = dataset_indices[train_size + val_size:train_size + val_size + test_size]
else:
self._test_indices = None
if self._preprocessed and 'batch_size' in self._preprocessed:
self._make_data_loaders(batch_size=self._preprocessed['batch_size'], generator=generator)
print("Dataset split into:")
print("-------------------")
print("{} train samples".format(train_size))
print("{} test samples".format(test_size))
print("{} validation samples".format(val_size))
def _make_data_loaders(self, batch_size, generator=None):
def seed_worker(worker_id):
import numpy as np
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
if self._validation_type == 'shuffle_split':
self._train_loader = loader(self.train_subset, batch_size=batch_size, shuffle=self._shuffle,
num_workers=self._num_workers, worker_init_fn=seed_worker, generator=generator)
self._validation_loader = loader(self.validation_subset, batch_size=batch_size, shuffle=self._shuffle,
num_workers=self._num_workers, worker_init_fn=seed_worker,
generator=generator)
if self._test_indices:
self._test_loader = loader(self.test_subset, batch_size=batch_size, shuffle=self._shuffle,
num_workers=self._num_workers, worker_init_fn=seed_worker,
generator=generator)
elif self._validation_type == 'defined_split':
if 'train' in self._split:
self._train_loader = loader(self.train_subset, batch_size=batch_size, shuffle=self._shuffle,
num_workers=self._num_workers, worker_init_fn=seed_worker,
generator=generator)
if 'test' in self._split:
self._test_loader = loader(self.test_subset, batch_size=batch_size, shuffle=self._shuffle,
num_workers=self._num_workers, worker_init_fn=seed_worker,
generator=generator)
if 'validation' in self._split:
self._validation_loader = loader(self.validation_subset, batch_size=batch_size, shuffle=self._shuffle,
num_workers=self._num_workers, worker_init_fn=seed_worker,
generator=generator)
elif self._validation_type is None:
self._data_loader = loader(self._dataset, batch_size=batch_size, shuffle=self._shuffle,
num_workers=self._num_workers, worker_init_fn=seed_worker, generator=generator)
self._train_loader = self._data_loader
self._test_loader = self._data_loader
self._validation_loader = self._data_loader
def get_text(self, input_ids):
"""
Helper function to decode the input_ids to text
"""
decoded_text = []
if isinstance(input_ids, list):
input_ids = torch.tensor(input_ids)
if input_ids.ndim > 1:
decoded_tokens = self._tokenizer.batch_decode(input_ids)
for t in decoded_tokens:
decoded_text.append(re.search(r'\[CLS\] (.*?) \[SEP\]', t).group(1))
else:
decoded_tokens = self._tokenizer.decode(input_ids)
decoded_text.append(re.search(r'\[CLS\] (.*?) \[SEP\]', decoded_tokens).group(1))
return decoded_text
@property
def train_subset(self):
train_ds = None
if self._validation_type == 'shuffle_split':
train_ds = self._dataset.select(self._train_indices)
elif self._validation_type == 'defined_split':
if 'train' in self._split:
train_ds = self._dataset.select(self._train_indices)
else:
raise ValueError("train split not specified")
elif self._validation_type is None:
train_ds = self._dataset
return train_ds
@property
def test_subset(self):
test_ds = None
if self._validation_type == 'shuffle_split':
if self._test_indices:
test_ds = self._dataset.select(self._test_indices)
elif self._validation_type == 'defined_split':
if 'test' in self._split:
test_ds = self._dataset.select(self._test_indices)
else:
raise ValueError("test split not specified")
elif self._validation_type is None:
test_ds = self._dataset
return test_ds
@property
def validation_subset(self):
validation_ds = None
if self._validation_type == 'shuffle_split':
validation_ds = self._dataset.select(self._validation_indices)
elif self._validation_type == 'defined_split':
if 'validation' in self._split:
validation_ds = self._dataset.select(self._validation_indices)
else:
raise ValueError("validation split not specified")
elif self._validation_type is None:
validation_ds = self._dataset
return validation_ds
@property
def train_loader(self):
if self._train_loader:
return self._train_loader
else:
raise ValueError("train split not specified")
@property
def test_loader(self):
if self._test_loader:
return self._test_loader
else:
raise ValueError("test split not specified")
@property
def validation_loader(self):
if self._validation_loader:
return self._validation_loader
else:
raise ValueError("validation split not specified")
def get_inc_dataloaders(self):
calib_dataset = self.train_subset
if self.validation_loader is not None:
eval_dataset = self.validation_subset
elif self.test_loader is not None:
eval_dataset = self.test_subset
else:
eval_dataset = self.train_subset
# Drop the label column because Intel Neural Compressor does not like it embedded with the features
# If we need to compute metrics from the labels, we can improve this with a subclass of
# torch.utils.data.Dataset or neural_compressor.data.datasets.bert_dataset.PytorchBertDataset that
# also returns the labels from __getitem__
for label_col_name in ['labels', 'label']:
if label_col_name in self._dataset.features.keys():
calib_dataset = calib_dataset.remove_columns(label_col_name)
eval_dataset = eval_dataset.remove_columns(label_col_name)
calib_dataloader = loader(calib_dataset, batch_size=self._preprocessed['batch_size'])
eval_dataloader = loader(eval_dataset, batch_size=self._preprocessed['batch_size'])
return calib_dataloader, eval_dataloader
|