File size: 13,710 Bytes
2623e99
561f457
2623e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561f457
2623e99
 
 
1cd0594
 
 
 
 
 
2623e99
 
 
 
 
 
 
 
 
561f457
2623e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561f457
 
 
 
 
2623e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561f457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0dc5bb
561f457
d0dc5bb
561f457
 
 
2623e99
 
 
 
 
 
561f457
 
 
 
 
 
 
2623e99
 
561f457
 
2623e99
 
 
 
 
561f457
2623e99
 
 
 
 
 
561f457
 
 
2623e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bf7635
d0dc5bb
 
 
2623e99
 
 
 
 
 
 
 
 
d0dc5bb
2623e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0dc5bb
8bf7635
d0dc5bb
2623e99
d095e6e
2623e99
8bf7635
2623e99
d0dc5bb
2623e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
#-*- coding: UTF-8 -*-
# Copyright 2022 the HuggingFace Team.
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import traceback

import gradio as gr

from paddlenlp import Taskflow
from paddlenlp.utils.doc_parser import DocParser

doc_parser = DocParser()
task_instance = Taskflow(
    "information_extraction",
    model="uie-x-base",
    task_path="PaddlePaddle/uie-x-base",
    from_hf_hub=True,
    schema="")

examples = [
    [
        "business_card.png",
        "Name;Title;Web Link;Email;Address",
    ],
    [
        "license.jpeg",
        "Name;DOB;ISS;EXP",
],
    [
        "invoice.jpeg",
        "名称;纳税人识别号;开票日期",
    ],
    [
        "custom.jpeg",
        "收发货人;进口口岸;进口日期;运输方式;征免性质;境内目的地;运输工具名称;包装种类;件数;合同协议号"
    ],
    [
        "resume.png",
        "职位;年龄;学校|时间;学校|专业",
    ],
]

example_files = {
    "Name;Title;Web Link;Email;Address": "business_card.png",
    "Name;DOB;ISS;EXP": "license.jpeg",
    "职位;年龄;学校|时间;学校|专业": "resume.png",
    "收发货人;进口口岸;进口日期;运输方式;征免性质;境内目的地;运输工具名称;包装种类;件数;合同协议号": "custom.jpeg",
    "名称;纳税人识别号;开票日期": "invoice.jpeg",
}

lang_map = {
    "resume.png": "ch",
    "custom.jpeg": "ch",
    "business_card.png": "en",
    "invoice.jpeg": "ch",
    "license.jpeg": "en",
}

def dbc2sbc(s):
    rs = ""
    for char in s:
        code = ord(char)
        if code == 0x3000:
            code = 0x0020
        else:
            code -= 0xfee0
        if not (0x0021 <= code and code <= 0x7e):
            rs += char
            continue
        rs += chr(code)
    return rs


def process_path(path):
    error = None
    if path:
        try:
            images_list = [doc_parser.read_image(path)]
            return (
                path,
                gr.update(visible=True, value=images_list),
                gr.update(visible=True),
                gr.update(visible=False, value=None),
                gr.update(visible=False, value=None),
                None,
            )
        except Exception as e:
            traceback.print_exc()
            error = str(e)
    return (
        None,
        gr.update(visible=False, value=None),
        gr.update(visible=False),
        gr.update(visible=False, value=None),
        gr.update(visible=False, value=None),
        gr.update(visible=True, value=error) if error is not None else None,
        None,
    )


def process_upload(file):
    if file:
        return process_path(file.name)
    else:
        return (
            None,
            gr.update(visible=False, value=None),
            gr.update(visible=False),
            gr.update(visible=False, value=None),
            gr.update(visible=False, value=None),
            None,
        )

def get_schema(schema_str):
    def _is_ch(s):
        for ch in s:
            if "\u4e00" <= ch <= "\u9fff":
                return True
        return False
    schema_lang = "ch" if _is_ch(schema_str) else "en"
    schema = schema_str.split(";")
    schema_list = []
    for s in schema:
        cand = s.split("|")
        if len(cand) == 1:
            schema_list.append(cand[0])
        else:
            subject = cand[0]
            relations = cand[1:]
            added = False
            for a in schema_list:
                if isinstance(a, dict):
                    if subject in a.keys():
                        a[subject].extend(relations)
                        added = True
                        break
            if not added:
                a = {subject: relations}
                schema_list.append(a)
    return schema_list, schema_lang


def run_taskflow(document, schema, argument):
    task_instance.set_schema(schema)
    task_instance.set_argument(argument)
    return task_instance({'doc': document})


def process_doc(document, schema, ocr_lang, layout_analysis):
    if not schema:
        schema = '时间;组织机构;人物'
    if document is None:
        return None, None

    schema, schema_lang = get_schema(dbc2sbc(schema))
    argument = {
        "ocr_lang": ocr_lang,
        "schema_lang": schema_lang,
        "layout_analysis": layout_analysis
    }
    prediction = run_taskflow(document, schema, argument)[0]

    img_show = doc_parser.write_image_with_results(
        document,
        result=prediction,
        return_image=True)
    img_list = [img_show]

    return (
        gr.update(visible=True, value=img_list),
        gr.update(visible=True, value=prediction),
    )


def load_example_document(img, schema, ocr_lang, layout_analysis):
    if img is not None:
        document = example_files[schema]
        choice = lang_map[document].split("-")
        ocr_lang = choice[0]
        layout_analysis = False if len(choice) == 1 else True
        preview, answer = process_doc(document, schema, ocr_lang, layout_analysis)
        return document, schema, preview, gr.update(visible=True), answer
    else:
        return None, None, None, gr.update(visible=False), None


def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content


CSS = """
#prompt input {
    font-size: 16px;
}
#url-textbox {
    padding: 0 !important;
}
#short-upload-box .w-full {
    min-height: 10rem !important;
}
/* I think something like this can be used to re-shape
 * the table
 */
/*
.gr-samples-table tr {
    display: inline;
}
.gr-samples-table .p-2 {
    width: 100px;
}
*/
#select-a-file {
    width: 100%;
}
#file-clear {
    padding-top: 2px !important;
    padding-bottom: 2px !important;
    padding-left: 8px !important;
    padding-right: 8px !important;
	margin-top: 10px;
}
.gradio-container .gr-button-primary {
    background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
    border: 1px solid #B0DCCC;
    border-radius: 8px;
    color: #1B8700;
}
.gradio-container.dark button#submit-button {
    background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
    border: 1px solid #B0DCCC;
    border-radius: 8px;
    color: #1B8700
}
table.gr-samples-table tr td {
    border: none;
    outline: none;
}
table.gr-samples-table tr td:first-of-type {
    width: 0%;
}
div#short-upload-box div.absolute {
    display: none !important;
}
gradio-app > div > div > div > div.w-full > div, .gradio-app > div > div > div > div.w-full > div {
    gap: 0px 2%;
}
gradio-app div div div div.w-full, .gradio-app div div div div.w-full {
    gap: 0px;
}
gradio-app h2, .gradio-app h2 {
    padding-top: 10px;
}
#answer {
    overflow-y: scroll;
    color: white;
    background: #666;
    border-color: #666;
    font-size: 20px;
    font-weight: bold;
}
#answer span {
    color: white;
}
#answer textarea {
    color:white;
    background: #777;
    border-color: #777;
    font-size: 18px;
}
#url-error input {
    color: red;
}
"""

with gr.Blocks(css=CSS) as demo:
    gr.HTML(read_content("header.html"))
    gr.Markdown(
        "Open-sourced by PaddleNLP, **UIE-X 🧾 ** is a universal information extraction engine for both scanned document and text inputs. It supports Entity Extraction, Relation Extraction and Event Extraction tasks."
        "UIE-X performs well on a zero-shot settings, which is enabled by a flexible schema that allows you to specify extraction targets with simple natural language."
        "Moreover, on PaddleNLP, we provide a comprehensive and easy-to-use fine-tuning and few-shot customization workflow." 
        "For more details, please visit our [GitHub](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/applications/information_extraction)"
    )

    document = gr.Variable()
    is_text = gr.Variable()
    example_schema = gr.Textbox(visible=False)
    example_image = gr.Image(visible=False)
    with gr.Row(equal_height=True):
        with gr.Column():
            with gr.Row():
                gr.Markdown("## 1. Select a file 选择文件", elem_id="select-a-file")
                img_clear_button = gr.Button(
                    "Clear", variant="secondary", elem_id="file-clear", visible=False
                )
            image = gr.Gallery(visible=False)
            with gr.Row(equal_height=True):
                with gr.Column():
                    with gr.Row():
                        url = gr.Textbox(
                            show_label=False,
                            placeholder="URL",
                            lines=1,
                            max_lines=1,
                            elem_id="url-textbox",
                        )
                        submit = gr.Button("Get")
                    url_error = gr.Textbox(
                        visible=False,
                        elem_id="url-error",
                        max_lines=1,
                        interactive=False,
                        label="Error",
                    )
            gr.Markdown("— or —")
            upload = gr.File(label=None, interactive=True, elem_id="short-upload-box")
            gr.Examples(
                examples=examples,
                inputs=[example_image, example_schema],
            )

        with gr.Column():
            gr.Markdown("## 2. Information Extraction 信息抽取 ")
            gr.Markdown("### 👉 Set a schema 设置schema")
            gr.Markdown("Entity extraction: entity type should be separated by ';', e.g. **Person;Organization**")
            gr.Markdown("实体抽取:实体类别之间以';'分割,例如 **人物;组织机构**")
            gr.Markdown("Relation extraction: set the subject and relation type, separated by '|', e.g. **Person|Date;Person|Email**")
            gr.Markdown("关系抽取:需配置主体和关系类别,中间以'|'分割,例如 **人物|出生时间;人物|邮箱**")
            gr.Markdown("### 👉 Model customization 模型定制")
            gr.Markdown("We recommend to further improve the extraction performance in specific domain through the process of [data annotation & fine-tuning](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/applications/information_extraction/document)")
            gr.Markdown("我们建议通过[数据标注+微调](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/applications/information_extraction/document)的流程进一步增强模型在特定场景的效果")

            schema = gr.Textbox(
                label="Schema",
                placeholder="e.g. Name|Company;Name|Position;Email;Phone Number",
                lines=1,
                max_lines=1,
            )

            ocr_lang = gr.Radio(
                choices=["ch", "en"],
                value="en",
                label="OCR语言 / OCR Language (Please choose ch for Chinese images.)",
            )

            layout_analysis = gr.Radio(
                choices=["yes", "no"],
                value="no",
                label="版面分析 / Layout analysis (Better extraction for multi-line text)",
            )

            with gr.Row():
                clear_button = gr.Button("Clear", variant="secondary")
                submit_button = gr.Button(
                    "Submit", variant="primary", elem_id="submit-button"
                )          
            with gr.Column():
                output = gr.JSON(label="Output", visible=False)

    for cb in [img_clear_button, clear_button]:
        cb.click(
            lambda _: (
                gr.update(visible=False, value=None),
                None,
                gr.update(visible=False, value=None),
                gr.update(visible=False),
                None,
                None,
                None,
                gr.update(visible=False, value=None),
                None,
            ),
            inputs=clear_button,
            outputs=[
                image,
                document,
                output,
                img_clear_button,
                example_image,
                upload,
                url,
                url_error,
                schema,
            ],
        )

    upload.change(
        fn=process_upload,
        inputs=[upload],
        outputs=[document, image, img_clear_button, output, url_error],
    )
    submit.click(
        fn=process_path,
        inputs=[url],
        outputs=[document, image, img_clear_button, output, url_error],
    )

    schema.submit(
        fn=process_doc,
        inputs=[document, schema, ocr_lang, layout_analysis],
        outputs=[image, output],
    )

    submit_button.click(
        fn=process_doc,
        inputs=[document, schema, ocr_lang, layout_analysis],
        outputs=[image, output],
    )

    example_image.change(
        fn=load_example_document,
        inputs=[example_image, example_schema, ocr_lang, layout_analysis],
        outputs=[document, schema, image, img_clear_button, output],
    )

    gr.HTML(read_content("footer.html"))


if __name__ == "__main__":
    demo.launch(enable_queue=False)