File size: 5,457 Bytes
e69a9f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr
from easygui import msgbox
import subprocess
import os
from .common_gui import (
    get_saveasfilename_path,
    get_any_file_path,
    get_file_path,
)

folder_symbol = '\U0001f4c2'  # 📂
refresh_symbol = '\U0001f504'  # 🔄
save_style_symbol = '\U0001f4be'  # 💾
document_symbol = '\U0001F4C4'   # 📄
PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe'


def svd_merge_lora(
    lora_a_model,
    lora_b_model,
    ratio,
    save_to,
    precision,
    save_precision,
    new_rank,
    new_conv_rank,
    device,
):
    # Check for caption_text_input
    if lora_a_model == '':
        msgbox('Invalid model A file')
        return

    if lora_b_model == '':
        msgbox('Invalid model B file')
        return

    # Check if source model exist
    if not os.path.isfile(lora_a_model):
        msgbox('The provided model A is not a file')
        return

    if not os.path.isfile(lora_b_model):
        msgbox('The provided model B is not a file')
        return

    ratio_a = ratio
    ratio_b = 1 - ratio

    run_cmd = f'{PYTHON} "{os.path.join("networks","svd_merge_lora.py")}"'
    run_cmd += f' --save_precision {save_precision}'
    run_cmd += f' --precision {precision}'
    run_cmd += f' --save_to "{save_to}"'
    run_cmd += f' --models "{lora_a_model}" "{lora_b_model}"'
    run_cmd += f' --ratios {ratio_a} {ratio_b}'
    run_cmd += f' --device {device}'
    run_cmd += f' --new_rank "{new_rank}"'
    run_cmd += f' --new_conv_rank "{new_conv_rank}"'

    print(run_cmd)

    # Run the command
    if os.name == 'posix':
        os.system(run_cmd)
    else:
        subprocess.run(run_cmd)


###
# Gradio UI
###


def gradio_svd_merge_lora_tab():
    with gr.Tab('Merge LoRA (SVD)'):
        gr.Markdown('This utility can merge two LoRA networks together.')

        lora_ext = gr.Textbox(value='*.safetensors *.pt', visible=False)
        lora_ext_name = gr.Textbox(value='LoRA model types', visible=False)

        with gr.Row():
            lora_a_model = gr.Textbox(
                label='LoRA model "A"',
                placeholder='Path to the LoRA A model',
                interactive=True,
            )
            button_lora_a_model_file = gr.Button(
                folder_symbol, elem_id='open_folder_small'
            )
            button_lora_a_model_file.click(
                get_file_path,
                inputs=[lora_a_model, lora_ext, lora_ext_name],
                outputs=lora_a_model,
                show_progress=False,
            )

            lora_b_model = gr.Textbox(
                label='LoRA model "B"',
                placeholder='Path to the LoRA B model',
                interactive=True,
            )
            button_lora_b_model_file = gr.Button(
                folder_symbol, elem_id='open_folder_small'
            )
            button_lora_b_model_file.click(
                get_file_path,
                inputs=[lora_b_model, lora_ext, lora_ext_name],
                outputs=lora_b_model,
                show_progress=False,
            )
        with gr.Row():
            ratio = gr.Slider(
                label='Merge ratio (eg: 0.7 mean 70% of model A and 30% of model B',
                minimum=0,
                maximum=1,
                step=0.01,
                value=0.5,
                interactive=True,
            )
            new_rank = gr.Slider(
                label='New Rank',
                minimum=1,
                maximum=1024,
                step=1,
                value=128,
                interactive=True,
            )
            new_conv_rank = gr.Slider(
                label='New Conv Rank',
                minimum=1,
                maximum=1024,
                step=1,
                value=128,
                interactive=True,
            )

        with gr.Row():
            save_to = gr.Textbox(
                label='Save to',
                placeholder='path for the file to save...',
                interactive=True,
            )
            button_save_to = gr.Button(
                folder_symbol, elem_id='open_folder_small'
            )
            button_save_to.click(
                get_saveasfilename_path,
                inputs=[save_to, lora_ext, lora_ext_name],
                outputs=save_to,
                show_progress=False,
            )
            precision = gr.Dropdown(
                label='Merge precision',
                choices=['fp16', 'bf16', 'float'],
                value='float',
                interactive=True,
            )
            save_precision = gr.Dropdown(
                label='Save precision',
                choices=['fp16', 'bf16', 'float'],
                value='float',
                interactive=True,
            )
            device = gr.Dropdown(
                label='Device',
                choices=[
                    'cpu',
                    'cuda',
                ],
                value='cuda',
                interactive=True,
            )

        convert_button = gr.Button('Merge model')

        convert_button.click(
            svd_merge_lora,
            inputs=[
                lora_a_model,
                lora_b_model,
                ratio,
                save_to,
                precision,
                save_precision,
                new_rank,
                new_conv_rank,
                device,
            ],
            show_progress=False,
        )