Spaces:
Sleeping
Sleeping
from transformers import T5ForConditionalGeneration, T5Tokenizer | |
import gradio as gr | |
model = T5ForConditionalGeneration.from_pretrained("PRAli22/t5-base-text-summarizer") | |
tokenizer = T5Tokenizer.from_pretrained("PRAli22/t5-base-text-summarizer") | |
TEXT_LEN = 512 | |
def summarize(text): | |
inputs = tokenizer(text, | |
max_length=TEXT_LEN, | |
truncation=True, | |
padding="max_length", | |
add_special_tokens=True, | |
return_tensors="pt") | |
summarized_ids = model.generate( | |
input_ids=inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
num_beams=4) | |
return " ".join([tokenizer.decode(token_ids, skip_special_tokens=True) | |
for token_ids in summarized_ids]) | |
css_code='body{background-image:url("https://media.istockphoto.com/id/1256252051/vector/people-using-online-translation-app.jpg?s=612x612&w=0&k=20&c=aa6ykHXnSwqKu31fFR6r6Y1bYMS5FMAU9yHqwwylA94=");}' | |
demo = gr.Interface( | |
fn=summarize, | |
inputs= | |
gr.Textbox(label="text", placeholder="Enter the text "), | |
outputs=gr.Textbox(label="summary"), | |
title="Text Summarizer", | |
description= "This is Text Summarizer System, it takes a text in English as inputs and returns it's summary", | |
css = css_code | |
) | |
demo.launch() | |