from transformers import T5ForConditionalGeneration, T5Tokenizer import gradio as gr model = T5ForConditionalGeneration.from_pretrained("PRAli22/t5-base-text-summarizer") tokenizer = T5Tokenizer.from_pretrained("PRAli22/t5-base-text-summarizer") TEXT_LEN = 512 def summarize(text): inputs = tokenizer(text, max_length=TEXT_LEN, truncation=True, padding="max_length", add_special_tokens=True, return_tensors="pt") summarized_ids = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], num_beams=4) return " ".join([tokenizer.decode(token_ids, skip_special_tokens=True) for token_ids in summarized_ids]) css_code='body{background-image:url("https://media.istockphoto.com/id/1256252051/vector/people-using-online-translation-app.jpg?s=612x612&w=0&k=20&c=aa6ykHXnSwqKu31fFR6r6Y1bYMS5FMAU9yHqwwylA94=");}' demo = gr.Interface( fn=summarize, inputs= gr.Textbox(label="text", placeholder="Enter the text "), outputs=gr.Textbox(label="summary"), title="Text Summarizer", description= "This is Text Summarizer System, it takes a text in English as inputs and returns it's summary", css = css_code ) demo.launch()