Spaces:
Sleeping
Sleeping
File size: 1,358 Bytes
a7eb2da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
import gradio as gr
model = T5ForConditionalGeneration.from_pretrained("PRAli22/t5-base-text-summarizer")
tokenizer = T5Tokenizer.from_pretrained("PRAli22/t5-base-text-summarizer")
TEXT_LEN = 512
def summarize(text):
inputs = tokenizer(text,
max_length=TEXT_LEN,
truncation=True,
padding="max_length",
add_special_tokens=True,
return_tensors="pt")
summarized_ids = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
num_beams=4)
return " ".join([tokenizer.decode(token_ids, skip_special_tokens=True)
for token_ids in summarized_ids])
css_code='body{background-image:url("https://media.istockphoto.com/id/1256252051/vector/people-using-online-translation-app.jpg?s=612x612&w=0&k=20&c=aa6ykHXnSwqKu31fFR6r6Y1bYMS5FMAU9yHqwwylA94=");}'
demo = gr.Interface(
fn=summarize,
inputs=
gr.Textbox(label="text", placeholder="Enter the text "),
outputs=gr.Textbox(label="summary"),
title="Text Summarizer",
description= "This is Text Summarizer System, it takes a text in English as inputs and returns it's summary",
css = css_code
)
demo.launch()
|