File size: 36,876 Bytes
b8d9420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
# YOLOR general utils

import glob
import logging
import math
import os
import platform
import random
import re
import subprocess
import time
from pathlib import Path

import cv2
import numpy as np
import pandas as pd
import torch
import torchvision
import yaml

from utils.google_utils import gsutil_getsize
from utils.metrics import fitness
from utils.torch_utils import init_torch_seeds

# Settings
torch.set_printoptions(linewidth=320, precision=5, profile='long')
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format})  # format short g, %precision=5
pd.options.display.max_columns = 10
cv2.setNumThreads(0)  # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8))  # NumExpr max threads


def set_logging(rank=-1):
    logging.basicConfig(
        format="%(message)s",
        level=logging.INFO if rank in [-1, 0] else logging.WARN)


def init_seeds(seed=0):
    # Initialize random number generator (RNG) seeds
    random.seed(seed)
    np.random.seed(seed)
    init_torch_seeds(seed)


def get_latest_run(search_dir='.'):
    # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
    last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
    return max(last_list, key=os.path.getctime) if last_list else ''


def isdocker():
    # Is environment a Docker container
    return Path('/workspace').exists()  # or Path('/.dockerenv').exists()


def emojis(str=''):
    # Return platform-dependent emoji-safe version of string
    return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str


def check_online():
    # Check internet connectivity
    import socket
    try:
        socket.create_connection(("1.1.1.1", 443), 5)  # check host accesability
        return True
    except OSError:
        return False


def check_git_status():
    # Recommend 'git pull' if code is out of date
    print(colorstr('github: '), end='')
    try:
        assert Path('.git').exists(), 'skipping check (not a git repository)'
        assert not isdocker(), 'skipping check (Docker image)'
        assert check_online(), 'skipping check (offline)'

        cmd = 'git fetch && git config --get remote.origin.url'
        url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git')  # github repo url
        branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip()  # checked out
        n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True))  # commits behind
        if n > 0:
            s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
                f"Use 'git pull' to update or 'git clone {url}' to download latest."
        else:
            s = f'up to date with {url} ✅'
        print(emojis(s))  # emoji-safe
    except Exception as e:
        print(e)


def check_requirements(requirements='requirements.txt', exclude=()):
    # Check installed dependencies meet requirements (pass *.txt file or list of packages)
    import pkg_resources as pkg
    prefix = colorstr('red', 'bold', 'requirements:')
    if isinstance(requirements, (str, Path)):  # requirements.txt file
        file = Path(requirements)
        if not file.exists():
            print(f"{prefix} {file.resolve()} not found, check failed.")
            return
        requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
    else:  # list or tuple of packages
        requirements = [x for x in requirements if x not in exclude]

    n = 0  # number of packages updates
    for r in requirements:
        try:
            pkg.require(r)
        except Exception as e:  # DistributionNotFound or VersionConflict if requirements not met
            n += 1
            print(f"{prefix} {e.req} not found and is required by YOLOR, attempting auto-update...")
            print(subprocess.check_output(f"pip install '{e.req}'", shell=True).decode())

    if n:  # if packages updated
        source = file.resolve() if 'file' in locals() else requirements
        s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
            f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
        print(emojis(s))  # emoji-safe


def check_img_size(img_size, s=32):
    # Verify img_size is a multiple of stride s
    new_size = make_divisible(img_size, int(s))  # ceil gs-multiple
    if new_size != img_size:
        print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
    return new_size


def check_imshow():
    # Check if environment supports image displays
    try:
        assert not isdocker(), 'cv2.imshow() is disabled in Docker environments'
        cv2.imshow('test', np.zeros((1, 1, 3)))
        cv2.waitKey(1)
        cv2.destroyAllWindows()
        cv2.waitKey(1)
        return True
    except Exception as e:
        print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
        return False


def check_file(file):
    # Search for file if not found
    if Path(file).is_file() or file == '':
        return file
    else:
        files = glob.glob('./**/' + file, recursive=True)  # find file
        assert len(files), f'File Not Found: {file}'  # assert file was found
        assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}"  # assert unique
        return files[0]  # return file


def check_dataset(dict):
    # Download dataset if not found locally
    val, s = dict.get('val'), dict.get('download')
    if val and len(val):
        val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])]  # val path
        if not all(x.exists() for x in val):
            print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
            if s and len(s):  # download script
                print('Downloading %s ...' % s)
                if s.startswith('http') and s.endswith('.zip'):  # URL
                    f = Path(s).name  # filename
                    torch.hub.download_url_to_file(s, f)
                    r = os.system('unzip -q %s -d ../ && rm %s' % (f, f))  # unzip
                else:  # bash script
                    r = os.system(s)
                print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure'))  # analyze return value
            else:
                raise Exception('Dataset not found.')


def make_divisible(x, divisor):
    # Returns x evenly divisible by divisor
    return math.ceil(x / divisor) * divisor


def clean_str(s):
    # Cleans a string by replacing special characters with underscore _
    return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)


def one_cycle(y1=0.0, y2=1.0, steps=100):
    # lambda function for sinusoidal ramp from y1 to y2
    return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1


def colorstr(*input):
    # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e.  colorstr('blue', 'hello world')
    *args, string = input if len(input) > 1 else ('blue', 'bold', input[0])  # color arguments, string
    colors = {'black': '\033[30m',  # basic colors
              'red': '\033[31m',
              'green': '\033[32m',
              'yellow': '\033[33m',
              'blue': '\033[34m',
              'magenta': '\033[35m',
              'cyan': '\033[36m',
              'white': '\033[37m',
              'bright_black': '\033[90m',  # bright colors
              'bright_red': '\033[91m',
              'bright_green': '\033[92m',
              'bright_yellow': '\033[93m',
              'bright_blue': '\033[94m',
              'bright_magenta': '\033[95m',
              'bright_cyan': '\033[96m',
              'bright_white': '\033[97m',
              'end': '\033[0m',  # misc
              'bold': '\033[1m',
              'underline': '\033[4m'}
    return ''.join(colors[x] for x in args) + f'{string}' + colors['end']


def labels_to_class_weights(labels, nc=80):
    # Get class weights (inverse frequency) from training labels
    if labels[0] is None:  # no labels loaded
        return torch.Tensor()

    labels = np.concatenate(labels, 0)  # labels.shape = (866643, 5) for COCO
    classes = labels[:, 0].astype(np.int32)  # labels = [class xywh]
    weights = np.bincount(classes, minlength=nc)  # occurrences per class

    # Prepend gridpoint count (for uCE training)
    # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum()  # gridpoints per image
    # weights = np.hstack([gpi * len(labels)  - weights.sum() * 9, weights * 9]) ** 0.5  # prepend gridpoints to start

    weights[weights == 0] = 1  # replace empty bins with 1
    weights = 1 / weights  # number of targets per class
    weights /= weights.sum()  # normalize
    return torch.from_numpy(weights)


def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
    # Produces image weights based on class_weights and image contents
    class_counts = np.array([np.bincount(x[:, 0].astype(np.int32), minlength=nc) for x in labels])
    image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
    # index = random.choices(range(n), weights=image_weights, k=1)  # weight image sample
    return image_weights


def coco80_to_coco91_class():  # converts 80-index (val2014) to 91-index (paper)
    # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
    # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
    # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
    # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]  # darknet to coco
    # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]  # coco to darknet
    x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
         35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
         64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
    return x


def xyxy2xywh(x):
    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = (x[:, 0] + x[:, 2]) / 2  # x center
    y[:, 1] = (x[:, 1] + x[:, 3]) / 2  # y center
    y[:, 2] = x[:, 2] - x[:, 0]  # width
    y[:, 3] = x[:, 3] - x[:, 1]  # height
    return y


def xywh2xyxy(x):
    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
    return y


def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
    # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw  # top left x
    y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh  # top left y
    y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw  # bottom right x
    y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh  # bottom right y
    return y


def xyn2xy(x, w=640, h=640, padw=0, padh=0):
    # Convert normalized segments into pixel segments, shape (n,2)
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = w * x[:, 0] + padw  # top left x
    y[:, 1] = h * x[:, 1] + padh  # top left y
    return y


def segment2box(segment, width=640, height=640):
    # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
    x, y = segment.T  # segment xy
    inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
    x, y, = x[inside], y[inside]
    return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4))  # xyxy


def segments2boxes(segments):
    # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
    boxes = []
    for s in segments:
        x, y = s.T  # segment xy
        boxes.append([x.min(), y.min(), x.max(), y.max()])  # cls, xyxy
    return xyxy2xywh(np.array(boxes))  # cls, xywh


def resample_segments(segments, n=1000):
    # Up-sample an (n,2) segment
    for i, s in enumerate(segments):
        s = np.concatenate((s, s[0:1, :]), axis=0)
        x = np.linspace(0, len(s) - 1, n)
        xp = np.arange(len(s))
        segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T  # segment xy
    return segments


def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
    # Rescale coords (xyxy) from img1_shape to img0_shape
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    coords[:, [0, 2]] -= pad[0]  # x padding
    coords[:, [1, 3]] -= pad[1]  # y padding
    coords[:, :4] /= gain
    clip_coords(coords, img0_shape)
    return coords


def clip_coords(boxes, img_shape):
    # Clip bounding xyxy bounding boxes to image shape (height, width)
    boxes[:, 0].clamp_(0, img_shape[1])  # x1
    boxes[:, 1].clamp_(0, img_shape[0])  # y1
    boxes[:, 2].clamp_(0, img_shape[1])  # x2
    boxes[:, 3].clamp_(0, img_shape[0])  # y2


def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
    # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
    box2 = box2.T

    # Get the coordinates of bounding boxes
    if x1y1x2y2:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
    else:  # transform from xywh to xyxy
        b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
        b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
        b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
        b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2

    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)

    # Union Area
    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
    union = w1 * h1 + w2 * h2 - inter + eps

    iou = inter / union

    if GIoU or DIoU or CIoU:
        cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) width
        ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared
            rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
                    (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center distance squared
            if DIoU:
                return iou - rho2 / c2  # DIoU
            elif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2)
                with torch.no_grad():
                    alpha = v / (v - iou + (1 + eps))
                return iou - (rho2 / c2 + v * alpha)  # CIoU
        else:  # GIoU https://arxiv.org/pdf/1902.09630.pdf
            c_area = cw * ch + eps  # convex area
            return iou - (c_area - union) / c_area  # GIoU
    else:
        return iou  # IoU




def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=2, eps=1e-9):
    # Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4
    box2 = box2.T

    # Get the coordinates of bounding boxes
    if x1y1x2y2:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
    else:  # transform from xywh to xyxy
        b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
        b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
        b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
        b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2

    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)

    # Union Area
    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
    union = w1 * h1 + w2 * h2 - inter + eps

    # change iou into pow(iou+eps)
    # iou = inter / union
    iou = torch.pow(inter/union + eps, alpha)
    # beta = 2 * alpha
    if GIoU or DIoU or CIoU:
        cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) width
        ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal
            rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)
            rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)
            rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha  # center distance
            if DIoU:
                return iou - rho2 / c2  # DIoU
            elif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
                with torch.no_grad():
                    alpha_ciou = v / ((1 + eps) - inter / union + v)
                # return iou - (rho2 / c2 + v * alpha_ciou)  # CIoU
                return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoU
        else:  # GIoU https://arxiv.org/pdf/1902.09630.pdf
            # c_area = cw * ch + eps  # convex area
            # return iou - (c_area - union) / c_area  # GIoU
            c_area = torch.max(cw * ch + eps, union) # convex area
            return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU
    else:
        return iou # torch.log(iou+eps) or iou


def box_iou(box1, box2):
    # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
    """
    Return intersection-over-union (Jaccard index) of boxes.
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Arguments:
        box1 (Tensor[N, 4])
        box2 (Tensor[M, 4])
    Returns:
        iou (Tensor[N, M]): the NxM matrix containing the pairwise
            IoU values for every element in boxes1 and boxes2
    """

    def box_area(box):
        # box = 4xn
        return (box[2] - box[0]) * (box[3] - box[1])

    area1 = box_area(box1.T)
    area2 = box_area(box2.T)

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
    return inter / (area1[:, None] + area2 - inter)  # iou = inter / (area1 + area2 - inter)


def wh_iou(wh1, wh2):
    # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
    wh1 = wh1[:, None]  # [N,1,2]
    wh2 = wh2[None]  # [1,M,2]
    inter = torch.min(wh1, wh2).prod(2)  # [N,M]
    return inter / (wh1.prod(2) + wh2.prod(2) - inter)  # iou = inter / (area1 + area2 - inter)


def box_giou(box1, box2):
    """
    Return generalized intersection-over-union (Jaccard index) between two sets of boxes.
    Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
    ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
    Args:
        boxes1 (Tensor[N, 4]): first set of boxes
        boxes2 (Tensor[M, 4]): second set of boxes
    Returns:
        Tensor[N, M]: the NxM matrix containing the pairwise generalized IoU values
        for every element in boxes1 and boxes2
    """

    def box_area(box):
        # box = 4xn
        return (box[2] - box[0]) * (box[3] - box[1])

    area1 = box_area(box1.T)
    area2 = box_area(box2.T)
    
    inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
    union = (area1[:, None] + area2 - inter)

    iou = inter / union

    lti = torch.min(box1[:, None, :2], box2[:, :2])
    rbi = torch.max(box1[:, None, 2:], box2[:, 2:])

    whi = (rbi - lti).clamp(min=0)  # [N,M,2]
    areai = whi[:, :, 0] * whi[:, :, 1]

    return iou - (areai - union) / areai


def box_ciou(box1, box2, eps: float = 1e-7):
    """
    Return complete intersection-over-union (Jaccard index) between two sets of boxes.
    Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
    ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
    Args:
        boxes1 (Tensor[N, 4]): first set of boxes
        boxes2 (Tensor[M, 4]): second set of boxes
        eps (float, optional): small number to prevent division by zero. Default: 1e-7
    Returns:
        Tensor[N, M]: the NxM matrix containing the pairwise complete IoU values
        for every element in boxes1 and boxes2
    """

    def box_area(box):
        # box = 4xn
        return (box[2] - box[0]) * (box[3] - box[1])

    area1 = box_area(box1.T)
    area2 = box_area(box2.T)
    
    inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
    union = (area1[:, None] + area2 - inter)

    iou = inter / union

    lti = torch.min(box1[:, None, :2], box2[:, :2])
    rbi = torch.max(box1[:, None, 2:], box2[:, 2:])

    whi = (rbi - lti).clamp(min=0)  # [N,M,2]
    diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps

    # centers of boxes
    x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
    y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
    x_g = (box2[:, 0] + box2[:, 2]) / 2
    y_g = (box2[:, 1] + box2[:, 3]) / 2
    # The distance between boxes' centers squared.
    centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2

    w_pred = box1[:, None, 2] - box1[:, None, 0]
    h_pred = box1[:, None, 3] - box1[:, None, 1]

    w_gt = box2[:, 2] - box2[:, 0]
    h_gt = box2[:, 3] - box2[:, 1]

    v = (4 / (torch.pi ** 2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2)
    with torch.no_grad():
        alpha = v / (1 - iou + v + eps)
    return iou - (centers_distance_squared / diagonal_distance_squared) - alpha * v


def box_diou(box1, box2, eps: float = 1e-7):
    """
    Return distance intersection-over-union (Jaccard index) between two sets of boxes.
    Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
    ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
    Args:
        boxes1 (Tensor[N, 4]): first set of boxes
        boxes2 (Tensor[M, 4]): second set of boxes
        eps (float, optional): small number to prevent division by zero. Default: 1e-7
    Returns:
        Tensor[N, M]: the NxM matrix containing the pairwise distance IoU values
        for every element in boxes1 and boxes2
    """

    def box_area(box):
        # box = 4xn
        return (box[2] - box[0]) * (box[3] - box[1])

    area1 = box_area(box1.T)
    area2 = box_area(box2.T)
    
    inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
    union = (area1[:, None] + area2 - inter)

    iou = inter / union

    lti = torch.min(box1[:, None, :2], box2[:, :2])
    rbi = torch.max(box1[:, None, 2:], box2[:, 2:])

    whi = (rbi - lti).clamp(min=0)  # [N,M,2]
    diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps

    # centers of boxes
    x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
    y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
    x_g = (box2[:, 0] + box2[:, 2]) / 2
    y_g = (box2[:, 1] + box2[:, 3]) / 2
    # The distance between boxes' centers squared.
    centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2

    # The distance IoU is the IoU penalized by a normalized
    # distance between boxes' centers squared.
    return iou - (centers_distance_squared / diagonal_distance_squared)


def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
                        labels=()):
    """Runs Non-Maximum Suppression (NMS) on inference results

    Returns:
         list of detections, on (n,6) tensor per image [xyxy, conf, cls]
    """

    nc = prediction.shape[2] - 5  # number of classes
    xc = prediction[..., 4] > conf_thres  # candidates

    # Settings
    min_wh, max_wh = 2, 4096  # (pixels) minimum and maximum box width and height
    max_det = 300  # maximum number of detections per image
    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
    time_limit = 10.0  # seconds to quit after
    redundant = True  # require redundant detections
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
    merge = False  # use merge-NMS

    t = time.time()
    output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[xc[xi]]  # confidence

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]):
            l = labels[xi]
            v = torch.zeros((len(l), nc + 5), device=x.device)
            v[:, :4] = l[:, 1:5]  # box
            v[:, 4] = 1.0  # conf
            v[range(len(l)), l[:, 0].long() + 5] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Compute conf
        if nc == 1:
            x[:, 5:] = x[:, 4:5] # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
                                 # so there is no need to multiplicate.
        else:
            x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf

        # Box (center x, center y, width, height) to (x1, y1, x2, y2)
        box = xywh2xyxy(x[:, :4])

        # Detections matrix nx6 (xyxy, conf, cls)
        if multi_label:
            i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
            x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
        else:  # best class only
            conf, j = x[:, 5:].max(1, keepdim=True)
            x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # Apply finite constraint
        # if not torch.isfinite(x).all():
        #     x = x[torch.isfinite(x).all(1)]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        elif n > max_nms:  # excess boxes
            x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        if i.shape[0] > max_det:  # limit detections
            i = i[:max_det]
        if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
            weights = iou * scores[None]  # box weights
            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
            if redundant:
                i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if (time.time() - t) > time_limit:
            print(f'WARNING: NMS time limit {time_limit}s exceeded')
            break  # time limit exceeded

    return output


def non_max_suppression_kpt(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
                        labels=(), kpt_label=False, nc=None, nkpt=None):
    """Runs Non-Maximum Suppression (NMS) on inference results

    Returns:
         list of detections, on (n,6) tensor per image [xyxy, conf, cls]
    """
    if nc is None:
        nc = prediction.shape[2] - 5  if not kpt_label else prediction.shape[2] - 56 # number of classes
    xc = prediction[..., 4] > conf_thres  # candidates

    # Settings
    min_wh, max_wh = 2, 4096  # (pixels) minimum and maximum box width and height
    max_det = 300  # maximum number of detections per image
    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
    time_limit = 10.0  # seconds to quit after
    redundant = True  # require redundant detections
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
    merge = False  # use merge-NMS

    t = time.time()
    output = [torch.zeros((0,6), device=prediction.device)] * prediction.shape[0]
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[xc[xi]]  # confidence

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]):
            l = labels[xi]
            v = torch.zeros((len(l), nc + 5), device=x.device)
            v[:, :4] = l[:, 1:5]  # box
            v[:, 4] = 1.0  # conf
            v[range(len(l)), l[:, 0].long() + 5] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Compute conf
        x[:, 5:5+nc] *= x[:, 4:5]  # conf = obj_conf * cls_conf

        # Box (center x, center y, width, height) to (x1, y1, x2, y2)
        box = xywh2xyxy(x[:, :4])

        # Detections matrix nx6 (xyxy, conf, cls)
        if multi_label:
            i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
            x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
        else:  # best class only
            if not kpt_label:
                conf, j = x[:, 5:].max(1, keepdim=True)
                x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
            else:
                kpts = x[:, 6:]
                conf, j = x[:, 5:6].max(1, keepdim=True)
                x = torch.cat((box, conf, j.float(), kpts), 1)[conf.view(-1) > conf_thres]


        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # Apply finite constraint
        # if not torch.isfinite(x).all():
        #     x = x[torch.isfinite(x).all(1)]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        elif n > max_nms:  # excess boxes
            x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        if i.shape[0] > max_det:  # limit detections
            i = i[:max_det]
        if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
            weights = iou * scores[None]  # box weights
            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
            if redundant:
                i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if (time.time() - t) > time_limit:
            print(f'WARNING: NMS time limit {time_limit}s exceeded')
            break  # time limit exceeded

    return output


def strip_optimizer(f='best.pt', s=''):  # from utils.general import *; strip_optimizer()
    # Strip optimizer from 'f' to finalize training, optionally save as 's'
    x = torch.load(f, map_location=torch.device('cpu'))
    if x.get('ema'):
        x['model'] = x['ema']  # replace model with ema
    for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates':  # keys
        x[k] = None
    x['epoch'] = -1
    x['model'].half()  # to FP16
    for p in x['model'].parameters():
        p.requires_grad = False
    torch.save(x, s or f)
    mb = os.path.getsize(s or f) / 1E6  # filesize
    print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")


def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
    # Print mutation results to evolve.txt (for use with train.py --evolve)
    a = '%10s' * len(hyp) % tuple(hyp.keys())  # hyperparam keys
    b = '%10.3g' * len(hyp) % tuple(hyp.values())  # hyperparam values
    c = '%10.4g' * len(results) % results  # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
    print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))

    if bucket:
        url = 'gs://%s/evolve.txt' % bucket
        if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
            os.system('gsutil cp %s .' % url)  # download evolve.txt if larger than local

    with open('evolve.txt', 'a') as f:  # append result
        f.write(c + b + '\n')
    x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0)  # load unique rows
    x = x[np.argsort(-fitness(x))]  # sort
    np.savetxt('evolve.txt', x, '%10.3g')  # save sort by fitness

    # Save yaml
    for i, k in enumerate(hyp.keys()):
        hyp[k] = float(x[0, i + 7])
    with open(yaml_file, 'w') as f:
        results = tuple(x[0, :7])
        c = '%10.4g' * len(results) % results  # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
        f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
        yaml.dump(hyp, f, sort_keys=False)

    if bucket:
        os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket))  # upload


def apply_classifier(x, model, img, im0):
    # applies a second stage classifier to yolo outputs
    im0 = [im0] if isinstance(im0, np.ndarray) else im0
    for i, d in enumerate(x):  # per image
        if d is not None and len(d):
            d = d.clone()

            # Reshape and pad cutouts
            b = xyxy2xywh(d[:, :4])  # boxes
            b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # rectangle to square
            b[:, 2:] = b[:, 2:] * 1.3 + 30  # pad
            d[:, :4] = xywh2xyxy(b).long()

            # Rescale boxes from img_size to im0 size
            scale_coords(img.shape[2:], d[:, :4], im0[i].shape)

            # Classes
            pred_cls1 = d[:, 5].long()
            ims = []
            for j, a in enumerate(d):  # per item
                cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
                im = cv2.resize(cutout, (224, 224))  # BGR
                # cv2.imwrite('test%i.jpg' % j, cutout)

                im = im[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
                im = np.ascontiguousarray(im, dtype=np.float32)  # uint8 to float32
                im /= 255.0  # 0 - 255 to 0.0 - 1.0
                ims.append(im)

            pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1)  # classifier prediction
            x[i] = x[i][pred_cls1 == pred_cls2]  # retain matching class detections

    return x


def increment_path(path, exist_ok=True, sep=''):
    # Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
    path = Path(path)  # os-agnostic
    if (path.exists() and exist_ok) or (not path.exists()):
        return str(path)
    else:
        dirs = glob.glob(f"{path}{sep}*")  # similar paths
        matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
        i = [int(m.groups()[0]) for m in matches if m]  # indices
        n = max(i) + 1 if i else 2  # increment number
        return f"{path}{sep}{n}"  # update path