File size: 5,151 Bytes
9452563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b464c0
9452563
 
 
 
 
 
 
 
 
 
 
 
dcd3408
9452563
dcd3408
9452563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from fastai.vision.all import *
from io import BytesIO
import requests
import streamlit as st

import numpy as np
import torch
import time
import cv2
from numpy import random
from models.experimental import attempt_load
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
    scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box

def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
    # Resize and pad image while meeting stride-multiple constraints
    shape = img.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better test mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return img, ratio, (dw, dh)

def detect_modify(img0, model, conf=0.4, imgsz=640, conf_thres = 0.25, iou_thres=0.45):
    st.image(img0, caption="Your image", use_column_width=True)

    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size

    # Padded resize
    img0 = cv2.cvtColor(np.asarray(img0), cv2.COLOR_RGB2BGR)
    img = letterbox(img0, imgsz, stride=stride)[0]
    # Convert
    img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
    img = np.ascontiguousarray(img)

    
    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    old_img_w = old_img_h = imgsz
    old_img_b = 1

    t0 = time.time()
    img = torch.from_numpy(img).to(device)
    # img /= 255.0  # 0 - 255 to 0.0 - 1.0
    img = img/255.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)

    # Inference
    # t1 = time_synchronized()
    with torch.no_grad():   # Calculating gradients would cause a GPU memory leak
        pred = model(img)[0]
    # t2 = time_synchronized()

    # Apply NMS
    pred = non_max_suppression(pred, conf_thres, iou_thres)
    # t3 = time_synchronized()

    # Process detections
    # for i, det in enumerate(pred):  # detections per image
        
    gn = torch.tensor(img0.shape)[[1, 0, 1, 0]]  # normalization gain whwh

    det = pred[0]
    if len(det):
        # Rescale boxes from img_size to im0 size
        det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round()

        # Print results
        s = ''
        for c in det[:, -1].unique():
            n = (det[:, -1] == c).sum()  # detections per class
            s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

        # Write results
        for *xyxy, conf, cls in reversed(det):
            label = f'{names[int(cls)]} {conf:.2f}'
            plot_one_box(xyxy, img0, label=label, color=colors[int(cls)], line_thickness=1)

    f"""
    ### Prediction result:
    """
    img0 = cv2.cvtColor(np.asarray(img0), cv2.COLOR_BGR2RGB)
    st.image(img0, caption="Prediction Result", use_column_width=True)

#set paramters
weight_path = './best.pt'
imgsz = 640
conf = 0.4
conf_thres = 0.25
iou_thres=0.45
device = torch.device("cpu")
path = "./"

# Load model
model = attempt_load(weight_path, map_location=torch.device('cpu'))  # load FP32 model

"""
# YOLOv7
This is a object detection model for [Cars].
"""
option = st.radio("", ["Upload Image", "Image URL", "Image Example"])

if option == "Upload Image":
    uploaded_file = st.file_uploader("Please upload an image.")

    if uploaded_file is not None:
        img = PILImage.create(uploaded_file)
        detect_modify(img, model, conf=conf, imgsz=imgsz, conf_thres=conf_thres, iou_thres=iou_thres)
else:
    url = st.text_input("Please input a url.")
    if url != "":
        try:
            response = requests.get(url)
            pil_img = PILImage.create(BytesIO(response.content))
            detect_modify(pil_img, model, conf=conf, imgsz=imgsz, conf_thres=conf_thres, iou_thres=iou_thres)
        except:
            st.text("Problem reading image from", url)