File size: 14,445 Bytes
b757ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import torchvision
import random
from PIL import Image, ImageOps
import numpy as np
import numbers
import math
import torch


class GroupRandomCrop(object):
    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size

    def __call__(self, img_group):

        w, h = img_group[0].size
        th, tw = self.size

        out_images = list()

        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)

        for img in img_group:
            assert(img.size[0] == w and img.size[1] == h)
            if w == tw and h == th:
                out_images.append(img)
            else:
                out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))

        return out_images


class MultiGroupRandomCrop(object):
    def __init__(self, size, groups=1):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.groups = groups

    def __call__(self, img_group):

        w, h = img_group[0].size
        th, tw = self.size

        out_images = list()

        for i in range(self.groups):
            x1 = random.randint(0, w - tw)
            y1 = random.randint(0, h - th)

            for img in img_group:
                assert(img.size[0] == w and img.size[1] == h)
                if w == tw and h == th:
                    out_images.append(img)
                else:
                    out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))

        return out_images


class GroupCenterCrop(object):
    def __init__(self, size):
        self.worker = torchvision.transforms.CenterCrop(size)

    def __call__(self, img_group):
        return [self.worker(img) for img in img_group]


class GroupRandomHorizontalFlip(object):
    """Randomly horizontally flips the given PIL.Image with a probability of 0.5
    """

    def __init__(self, is_flow=False):
        self.is_flow = is_flow

    def __call__(self, img_group, is_flow=False):
        v = random.random()
        if v < 0.5:
            ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group]
            if self.is_flow:
                for i in range(0, len(ret), 2):
                    # invert flow pixel values when flipping
                    ret[i] = ImageOps.invert(ret[i])
            return ret
        else:
            return img_group


class GroupNormalize(object):
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, tensor):
        rep_mean = self.mean * (tensor.size()[0] // len(self.mean))
        rep_std = self.std * (tensor.size()[0] // len(self.std))

        # TODO: make efficient
        for t, m, s in zip(tensor, rep_mean, rep_std):
            t.sub_(m).div_(s)

        return tensor


class GroupScale(object):
    """ Rescales the input PIL.Image to the given 'size'.
    'size' will be the size of the smaller edge.
    For example, if height > width, then image will be
    rescaled to (size * height / width, size)
    size: size of the smaller edge
    interpolation: Default: PIL.Image.BILINEAR
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
        self.worker = torchvision.transforms.Resize(size, interpolation)

    def __call__(self, img_group):
        return [self.worker(img) for img in img_group]


class GroupOverSample(object):
    def __init__(self, crop_size, scale_size=None, flip=True):
        self.crop_size = crop_size if not isinstance(
            crop_size, int) else (crop_size, crop_size)

        if scale_size is not None:
            self.scale_worker = GroupScale(scale_size)
        else:
            self.scale_worker = None
        self.flip = flip

    def __call__(self, img_group):

        if self.scale_worker is not None:
            img_group = self.scale_worker(img_group)

        image_w, image_h = img_group[0].size
        crop_w, crop_h = self.crop_size

        offsets = GroupMultiScaleCrop.fill_fix_offset(
            False, image_w, image_h, crop_w, crop_h)
        oversample_group = list()
        for o_w, o_h in offsets:
            normal_group = list()
            flip_group = list()
            for i, img in enumerate(img_group):
                crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h))
                normal_group.append(crop)
                flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT)

                if img.mode == 'L' and i % 2 == 0:
                    flip_group.append(ImageOps.invert(flip_crop))
                else:
                    flip_group.append(flip_crop)

            oversample_group.extend(normal_group)
            if self.flip:
                oversample_group.extend(flip_group)
        return oversample_group


class GroupFullResSample(object):
    def __init__(self, crop_size, scale_size=None, flip=True):
        self.crop_size = crop_size if not isinstance(
            crop_size, int) else (crop_size, crop_size)

        if scale_size is not None:
            self.scale_worker = GroupScale(scale_size)
        else:
            self.scale_worker = None
        self.flip = flip

    def __call__(self, img_group):

        if self.scale_worker is not None:
            img_group = self.scale_worker(img_group)

        image_w, image_h = img_group[0].size
        crop_w, crop_h = self.crop_size

        w_step = (image_w - crop_w) // 4
        h_step = (image_h - crop_h) // 4

        offsets = list()
        offsets.append((0 * w_step, 2 * h_step))  # left
        offsets.append((4 * w_step, 2 * h_step))  # right
        offsets.append((2 * w_step, 2 * h_step))  # center

        oversample_group = list()
        for o_w, o_h in offsets:
            normal_group = list()
            flip_group = list()
            for i, img in enumerate(img_group):
                crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h))
                normal_group.append(crop)
                if self.flip:
                    flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT)

                    if img.mode == 'L' and i % 2 == 0:
                        flip_group.append(ImageOps.invert(flip_crop))
                    else:
                        flip_group.append(flip_crop)

            oversample_group.extend(normal_group)
            oversample_group.extend(flip_group)
        return oversample_group


class GroupMultiScaleCrop(object):

    def __init__(self, input_size, scales=None, max_distort=1,
                 fix_crop=True, more_fix_crop=True):
        self.scales = scales if scales is not None else [1, .875, .75, .66]
        self.max_distort = max_distort
        self.fix_crop = fix_crop
        self.more_fix_crop = more_fix_crop
        self.input_size = input_size if not isinstance(input_size, int) else [
            input_size, input_size]
        self.interpolation = Image.BILINEAR

    def __call__(self, img_group):

        im_size = img_group[0].size

        crop_w, crop_h, offset_w, offset_h = self._sample_crop_size(im_size)
        crop_img_group = [
            img.crop(
                (offset_w,
                 offset_h,
                 offset_w +
                 crop_w,
                 offset_h +
                 crop_h)) for img in img_group]
        ret_img_group = [img.resize((self.input_size[0], self.input_size[1]), self.interpolation)
                         for img in crop_img_group]
        return ret_img_group

    def _sample_crop_size(self, im_size):
        image_w, image_h = im_size[0], im_size[1]

        # find a crop size
        base_size = min(image_w, image_h)
        crop_sizes = [int(base_size * x) for x in self.scales]
        crop_h = [
            self.input_size[1] if abs(
                x - self.input_size[1]) < 3 else x for x in crop_sizes]
        crop_w = [
            self.input_size[0] if abs(
                x - self.input_size[0]) < 3 else x for x in crop_sizes]

        pairs = []
        for i, h in enumerate(crop_h):
            for j, w in enumerate(crop_w):
                if abs(i - j) <= self.max_distort:
                    pairs.append((w, h))

        crop_pair = random.choice(pairs)
        if not self.fix_crop:
            w_offset = random.randint(0, image_w - crop_pair[0])
            h_offset = random.randint(0, image_h - crop_pair[1])
        else:
            w_offset, h_offset = self._sample_fix_offset(
                image_w, image_h, crop_pair[0], crop_pair[1])

        return crop_pair[0], crop_pair[1], w_offset, h_offset

    def _sample_fix_offset(self, image_w, image_h, crop_w, crop_h):
        offsets = self.fill_fix_offset(
            self.more_fix_crop, image_w, image_h, crop_w, crop_h)
        return random.choice(offsets)

    @staticmethod
    def fill_fix_offset(more_fix_crop, image_w, image_h, crop_w, crop_h):
        w_step = (image_w - crop_w) // 4
        h_step = (image_h - crop_h) // 4

        ret = list()
        ret.append((0, 0))  # upper left
        ret.append((4 * w_step, 0))  # upper right
        ret.append((0, 4 * h_step))  # lower left
        ret.append((4 * w_step, 4 * h_step))  # lower right
        ret.append((2 * w_step, 2 * h_step))  # center

        if more_fix_crop:
            ret.append((0, 2 * h_step))  # center left
            ret.append((4 * w_step, 2 * h_step))  # center right
            ret.append((2 * w_step, 4 * h_step))  # lower center
            ret.append((2 * w_step, 0 * h_step))  # upper center

            ret.append((1 * w_step, 1 * h_step))  # upper left quarter
            ret.append((3 * w_step, 1 * h_step))  # upper right quarter
            ret.append((1 * w_step, 3 * h_step))  # lower left quarter
            ret.append((3 * w_step, 3 * h_step))  # lower righ quarter

        return ret


class GroupRandomSizedCrop(object):
    """Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size
    and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio
    This is popularly used to train the Inception networks
    size: size of the smaller edge
    interpolation: Default: PIL.Image.BILINEAR
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img_group):
        for attempt in range(10):
            area = img_group[0].size[0] * img_group[0].size[1]
            target_area = random.uniform(0.08, 1.0) * area
            aspect_ratio = random.uniform(3. / 4, 4. / 3)

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                w, h = h, w

            if w <= img_group[0].size[0] and h <= img_group[0].size[1]:
                x1 = random.randint(0, img_group[0].size[0] - w)
                y1 = random.randint(0, img_group[0].size[1] - h)
                found = True
                break
        else:
            found = False
            x1 = 0
            y1 = 0

        if found:
            out_group = list()
            for img in img_group:
                img = img.crop((x1, y1, x1 + w, y1 + h))
                assert(img.size == (w, h))
                out_group.append(
                    img.resize(
                        (self.size, self.size), self.interpolation))
            return out_group
        else:
            # Fallback
            scale = GroupScale(self.size, interpolation=self.interpolation)
            crop = GroupRandomCrop(self.size)
            return crop(scale(img_group))


class ConvertDataFormat(object):
    def __init__(self, model_type):
        self.model_type = model_type

    def __call__(self, images):
        if self.model_type == '2D':
            return images
        tc, h, w = images.size()
        t = tc // 3
        images = images.view(t, 3, h, w)
        images = images.permute(1, 0, 2, 3)
        return images


class Stack(object):

    def __init__(self, roll=False):
        self.roll = roll

    def __call__(self, img_group):
        if img_group[0].mode == 'L':
            return np.concatenate([np.expand_dims(x, 2)
                                   for x in img_group], axis=2)
        elif img_group[0].mode == 'RGB':
            if self.roll:
                return np.concatenate([np.array(x)[:, :, ::-1]
                                       for x in img_group], axis=2)
            else:
                #print(np.concatenate(img_group, axis=2).shape)
                # print(img_group[0].shape)
                return np.concatenate(img_group, axis=2)


class ToTorchFormatTensor(object):
    """ Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255]
    to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """

    def __init__(self, div=True):
        self.div = div

    def __call__(self, pic):
        if isinstance(pic, np.ndarray):
            # handle numpy array
            img = torch.from_numpy(pic).permute(2, 0, 1).contiguous()
        else:
            # handle PIL Image
            img = torch.ByteTensor(
                torch.ByteStorage.from_buffer(
                    pic.tobytes()))
            img = img.view(pic.size[1], pic.size[0], len(pic.mode))
            # put it from HWC to CHW format
            # yikes, this transpose takes 80% of the loading time/CPU
            img = img.transpose(0, 1).transpose(0, 2).contiguous()
        return img.float().div(255) if self.div else img.float()


class IdentityTransform(object):

    def __call__(self, data):
        return data


if __name__ == "__main__":
    trans = torchvision.transforms.Compose([
        GroupScale(256),
        GroupRandomCrop(224),
        Stack(),
        ToTorchFormatTensor(),
        GroupNormalize(
            mean=[.485, .456, .406],
            std=[.229, .224, .225]
        )]
    )

    im = Image.open('../tensorflow-model-zoo.torch/lena_299.png')

    color_group = [im] * 3
    rst = trans(color_group)

    gray_group = [im.convert('L')] * 9
    gray_rst = trans(gray_group)

    trans2 = torchvision.transforms.Compose([
        GroupRandomSizedCrop(256),
        Stack(),
        ToTorchFormatTensor(),
        GroupNormalize(
            mean=[.485, .456, .406],
            std=[.229, .224, .225])
    ])
    print(trans2(color_group))