Spaces:
Running
on
T4
Running
on
T4
# face-parsing.PyTorch | |
<p align="center"> | |
<a href="https://github.com/zllrunning/face-parsing.PyTorch"> | |
<img class="page-image" src="https://github.com/zllrunning/face-parsing.PyTorch/blob/master/6.jpg" > | |
</a> | |
</p> | |
### Contents | |
- [Training](#training) | |
- [Demo](#Demo) | |
- [References](#references) | |
## Training | |
1. Prepare training data: | |
-- download [CelebAMask-HQ dataset](https://github.com/switchablenorms/CelebAMask-HQ) | |
-- change file path in the `prepropess_data.py` and run | |
```Shell | |
python prepropess_data.py | |
``` | |
2. Train the model using CelebAMask-HQ dataset: | |
Just run the train script: | |
``` | |
$ CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train.py | |
``` | |
If you do not wish to train the model, you can download [our pre-trained model](https://drive.google.com/open?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812) and save it in `res/cp`. | |
## Demo | |
1. Evaluate the trained model using: | |
```Shell | |
# evaluate using GPU | |
python test.py | |
``` | |
## Face makeup using parsing maps | |
[**face-makeup.PyTorch**](https://github.com/zllrunning/face-makeup.PyTorch) | |
<table> | |
<tr> | |
<th> </th> | |
<th>Hair</th> | |
<th>Lip</th> | |
</tr> | |
<!-- Line 1: Original Input --> | |
<tr> | |
<td><em>Original Input</em></td> | |
<td><img src="makeup/116_ori.png" height="256" width="256" alt="Original Input"></td> | |
<td><img src="makeup/116_lip_ori.png" height="256" width="256" alt="Original Input"></td> | |
</tr> | |
<!-- Line 3: Color --> | |
<tr> | |
<td>Color</td> | |
<td><img src="makeup/116_1.png" height="256" width="256" alt="Color"></td> | |
<td><img src="makeup/116_3.png" height="256" width="256" alt="Color"></td> | |
</tr> | |
</table> | |
## References | |
- [BiSeNet](https://github.com/CoinCheung/BiSeNet) |