File size: 50,680 Bytes
f4d3b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cda6b32
f4d3b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "089fb047",
   "metadata": {},
   "source": [
    "# Workflow of QuizTube 🧠"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f7cf0634",
   "metadata": {},
   "source": [
    "## 1. Extract the YouTube ID from a given link"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "8415cbde",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "SA2iWivDJiE\n",
      "_oPAwA_Udwc\n",
      "SA2iWivDJiE\n",
      "SA2iWivDJiE\n",
      "rTHlyTphWP0\n",
      "n0g-Y0oo5Qs\n"
     ]
    }
   ],
   "source": [
    "from pytube import extract\n",
    "\n",
    "urls = [\n",
    "    'http://youtu.be/SA2iWivDJiE',\n",
    "    'http://www.youtube.com/watch?v=_oPAwA_Udwc&feature=feedu',\n",
    "    'http://www.youtube.com/embed/SA2iWivDJiE',\n",
    "    'http://www.youtube.com/v/SA2iWivDJiE?version=3&hl=en_US',\n",
    "    'https://www.youtube.com/watch?v=rTHlyTphWP0&index=6&list=PLjeDyYvG6-40qawYNR4juzvSOg-ezZ2a6',\n",
    "    'https://www.youtube.com/watch?time_continue=9&v=n0g-Y0oo5Qs&feature=emb_logo'\n",
    "]\n",
    "\n",
    "for url in urls:\n",
    "    video_id = extract.video_id(url)\n",
    "    print(video_id)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cc0e3642",
   "metadata": {},
   "source": [
    "## 2. Extract & transform video captions"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "0809fc83",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[{'text': 'Okay, some of you might have heard already,\\nbut you can now use Python inside Excel.',\n",
       "  'start': 0.13,\n",
       "  'duration': 4.74},\n",
       " {'text': \"In this video, I will show some basic examples\\nof how to use it, and I'll guide you through\",\n",
       "  'start': 4.87,\n",
       "  'duration': 5.2},\n",
       " {'text': 'a real-world example to give you an idea of\\nthe possibilities.',\n",
       "  'start': 10.07,\n",
       "  'duration': 4.199},\n",
       " {'text': \"In that example, I'll show you some very useful\\npandas features and some more advanced charts.\",\n",
       "  'start': 14.269,\n",
       "  'duration': 5.301},\n",
       " {'text': \"Towards the end, I'll also share my personal\\nopinion about this new feature and point out\",\n",
       "  'start': 19.57,\n",
       "  'duration': 4.58},\n",
       " {'text': 'some limitations.', 'start': 24.15, 'duration': 1.26},\n",
       " {'text': 'But, before we start, a quick shout-out to\\nLuke.',\n",
       "  'start': 25.41,\n",
       "  'duration': 3.1},\n",
       " {'text': 'Luke was kind enough to connect me with people\\nfrom Anaconda so that I could test this feature.',\n",
       "  'start': 28.51,\n",
       "  'duration': 4.93},\n",
       " {'text': 'So, thank you very much, Luke and the team\\nfrom Anaconda.',\n",
       "  'start': 33.44,\n",
       "  'duration': 3.45},\n",
       " {'text': \"And with that said, let's dive in.\",\n",
       "  'start': 36.89,\n",
       "  'duration': 2.17},\n",
       " {'text': \"Ok, let's start with a basic example.\",\n",
       "  'start': 39.06,\n",
       "  'duration': 2.72},\n",
       " {'text': \"Under the formulas ribbon, there's a new Python\\nsection.\",\n",
       "  'start': 41.78,\n",
       "  'duration': 3.549},\n",
       " {'text': \"When I click on the Python logo, you'll notice\\nthat the appearance of the formula bar changes.\",\n",
       "  'start': 45.329,\n",
       "  'duration': 5.5},\n",
       " {'text': 'This is where you can now write your Python\\ncode.',\n",
       "  'start': 50.829,\n",
       "  'duration': 2.691},\n",
       " {'text': 'For the first step, I\\'ll create a dataframe\\nwith the command \"df is equal to\", and then',\n",
       "  'start': 53.52,\n",
       "  'duration': 5.03},\n",
       " {'text': 'simply select my Excel table here on the left.',\n",
       "  'start': 58.55,\n",
       "  'duration': 2.82},\n",
       " {'text': \"It doesn't have to be a table, by the way;\\na normal cell range will also work.\",\n",
       "  'start': 61.37,\n",
       "  'duration': 4.24},\n",
       " {'text': 'To execute the code, I will press Ctrl + Enter.',\n",
       "  'start': 65.61,\n",
       "  'duration': 3.2},\n",
       " {'text': 'If you just press Enter, it will insert a\\nnew line.',\n",
       "  'start': 68.81,\n",
       "  'duration': 2.91},\n",
       " {'text': 'So now, the data source is now your table.',\n",
       "  'start': 71.72,\n",
       "  'duration': 2.74},\n",
       " {'text': 'In my case, the table is named IrisDataSet,\\nand as it is correctly recognized, it has',\n",
       "  'start': 74.46,\n",
       "  'duration': 4.89},\n",
       " {'text': 'a header row.', 'start': 79.35, 'duration': 1.0},\n",
       " {'text': 'In the cell where I wrote the Python code,\\nthe dataframe object now appears.',\n",
       "  'start': 80.35,\n",
       "  'duration': 3.53},\n",
       " {'text': 'So, as you might already know, everything\\nin Python is an object, and we can store that',\n",
       "  'start': 83.88,\n",
       "  'duration': 5.3},\n",
       " {'text': 'object in a cell.', 'start': 89.18, 'duration': 1.52},\n",
       " {'text': 'I can also get a preview of what the dataframe\\nlooks like when I click on the icon.',\n",
       "  'start': 90.7,\n",
       "  'duration': 4.33},\n",
       " {'text': 'It gives me a preview of the dataframe.',\n",
       "  'start': 95.03,\n",
       "  'duration': 4.06},\n",
       " {'text': 'Now that we have our dataframe, you can use\\nall the different Pandas functions.',\n",
       "  'start': 99.09,\n",
       "  'duration': 3.96},\n",
       " {'text': \"I named my dataframe 'df', so in the next\\ncell, I just need to type 'df'.\",\n",
       "  'start': 103.05,\n",
       "  'duration': 5.54},\n",
       " {'text': \"And for this example, I will use the 'describe'\\nmethod to get some statistical insights into\",\n",
       "  'start': 108.59,\n",
       "  'duration': 4.48},\n",
       " {'text': 'the data.', 'start': 113.07, 'duration': 1.079},\n",
       " {'text': 'When I execute the cell using Ctrl + Enter,\\nExcel returns the object.',\n",
       "  'start': 114.149,\n",
       "  'duration': 4.111},\n",
       " {'text': \"In this case, the 'describe' method returns\\na dataframe.\",\n",
       "  'start': 118.26,\n",
       "  'duration': 4.179},\n",
       " {'text': 'If you actually want to print the dataframe\\nto Excel, you can select \"Excel value\" from',\n",
       "  'start': 122.439,\n",
       "  'duration': 4.47},\n",
       " {'text': 'the drop-down list.', 'start': 126.909, 'duration': 1.081},\n",
       " {'text': \"You'll then see a statistical summary of the\\ndata directly in Excel.\",\n",
       "  'start': 127.99,\n",
       "  'duration': 3.139},\n",
       " {'text': 'Likewise, I will calculate the correlation.',\n",
       "  'start': 131.129,\n",
       "  'duration': 2.551},\n",
       " {'text': \"But this time, instead of using my 'df' variable,\\nI will refer to the cell that holds the dataframe\",\n",
       "  'start': 133.68,\n",
       "  'duration': 5.3},\n",
       " {'text': 'object, which is H2 in my case.',\n",
       "  'start': 138.98,\n",
       "  'duration': 2.36},\n",
       " {'text': 'Then, on my dataframe object, I can call the\\ncorrelation method.',\n",
       "  'start': 141.34,\n",
       "  'duration': 4.47},\n",
       " {'text': 'As before, we get a dataframe in return.',\n",
       "  'start': 145.81,\n",
       "  'duration': 2.44},\n",
       " {'text': 'However, I will adjust the output to insert\\nthe data into the spreadsheet.',\n",
       "  'start': 148.25,\n",
       "  'duration': 4.709},\n",
       " {'text': \"Okay, now let's proceed to some basic plots.\",\n",
       "  'start': 152.959,\n",
       "  'duration': 2.991},\n",
       " {'text': 'With the integration of Python, we can tap\\ninto various plotting libraries.',\n",
       "  'start': 155.95,\n",
       "  'duration': 4.1},\n",
       " {'text': 'For my demonstration, I will use matplotlib\\nto craft a scatter plot.',\n",
       "  'start': 160.05,\n",
       "  'duration': 4.24},\n",
       " {'text': 'When I run the code, it returns an image object.',\n",
       "  'start': 164.29,\n",
       "  'duration': 2.75},\n",
       " {'text': 'However, as with the earlier examples, I want\\nto display the actual chart.',\n",
       "  'start': 167.04,\n",
       "  'duration': 4.42},\n",
       " {'text': 'So, I just need to switch the output.',\n",
       "  'start': 171.46,\n",
       "  'duration': 2.39},\n",
       " {'text': 'As a result, we have an image stored in a\\ncell.',\n",
       "  'start': 173.85,\n",
       "  'duration': 3.71},\n",
       " {'text': 'You can right-click on this image to create\\na reference to the cell.',\n",
       "  'start': 177.56,\n",
       "  'duration': 4.08},\n",
       " {'text': 'And now, we have an Excel image with our scatter\\nplot.',\n",
       "  'start': 181.64,\n",
       "  'duration': 2.929},\n",
       " {'text': 'Next, I plan to generate a Seaborn pair plot,\\nwhich only requires one line of code.',\n",
       "  'start': 184.569,\n",
       "  'duration': 6.14},\n",
       " {'text': 'The execution of this cell might take a moment,\\nbut once complete, it also returns an image',\n",
       "  'start': 190.709,\n",
       "  'duration': 6.041},\n",
       " {'text': 'object.', 'start': 196.75, 'duration': 1.0},\n",
       " {'text': \"Similar to before, I'll create a reference\\nfor this image.\",\n",
       "  'start': 197.75,\n",
       "  'duration': 3.4},\n",
       " {'text': 'And there we have it: our pair plot.',\n",
       "  'start': 201.15,\n",
       "  'duration': 2.41},\n",
       " {'text': 'This is particularly useful for visualizing\\nthe linear correlation among all dataset variables',\n",
       "  'start': 203.56,\n",
       "  'duration': 4.87},\n",
       " {'text': 'and displaying the distribution.',\n",
       "  'start': 208.43,\n",
       "  'duration': 2.51},\n",
       " {'text': 'Lastly, I will generate a linear regression\\nplot for two distinct variables.',\n",
       "  'start': 210.94,\n",
       "  'duration': 4.94},\n",
       " {'text': 'Once again, in Seaborn, we only need one line\\nof code for this.',\n",
       "  'start': 215.88,\n",
       "  'duration': 4.55},\n",
       " {'text': 'Okay, so those were some basic examples that\\ngive some general idea of this new feature.',\n",
       "  'start': 220.43,\n",
       "  'duration': 5.699},\n",
       " {'text': 'Now, let us move on to a real-world example.',\n",
       "  'start': 226.129,\n",
       "  'duration': 3.211},\n",
       " {'text': 'Here in the datasheet, I have a transaction\\ntable of sales for five different stores in',\n",
       "  'start': 229.34,\n",
       "  'duration': 4.47},\n",
       " {'text': 'Japan.', 'start': 233.81, 'duration': 1.0},\n",
       " {'text': 'We have there the City where the store is\\nlocated, the information of the customer,',\n",
       "  'start': 234.81,\n",
       "  'duration': 3.709},\n",
       " {'text': 'so, if the customer was a member or not and\\nthe gender of the customer.',\n",
       "  'start': 238.519,\n",
       "  'duration': 3.881},\n",
       " {'text': 'Next, we have the information about the product\\nline, unit price, quantity, date and time',\n",
       "  'start': 242.4,\n",
       "  'duration': 5.39},\n",
       " {'text': 'of the purchase, the payment method, the rating\\nfrom the customer and the sales amount, which',\n",
       "  'start': 247.79,\n",
       "  'duration': 5.49},\n",
       " {'text': 'is the unit price multiplied by the quantity.',\n",
       "  'start': 253.28,\n",
       "  'duration': 2.769},\n",
       " {'text': 'As before, this data is an Excel table; I\\nnamed it \"table Sales\".',\n",
       "  'start': 256.049,\n",
       "  'duration': 6.071},\n",
       " {'text': \"Okay, now I've taken this data and conducted\\nsome analysis using Python.\",\n",
       "  'start': 262.12,\n",
       "  'duration': 5.269},\n",
       " {'text': 'First, I loaded the dataframe and named it\\n\"data\".',\n",
       "  'start': 267.389,\n",
       "  'duration': 4.991},\n",
       " {'text': \"After loading the data, there wasn't much\\ncleanup needed.\",\n",
       "  'start': 272.38,\n",
       "  'duration': 2.48},\n",
       " {'text': 'The main task was converting the date and\\ntime column into a DateTime object, which',\n",
       "  'start': 274.86,\n",
       "  'duration': 5.16},\n",
       " {'text': 'is required for my time and date-based analysis.',\n",
       "  'start': 280.02,\n",
       "  'duration': 3.05},\n",
       " {'text': \"And there's also an important hint: the cleanup\\nprocess is in a cell below the actual dataframe.\",\n",
       "  'start': 283.07,\n",
       "  'duration': 6.31},\n",
       " {'text': \"This is important because I refer to the 'data'\\nvariable, which should be defined in a cell\",\n",
       "  'start': 289.38,\n",
       "  'duration': 4.93},\n",
       " {'text': 'above my current one, as the Python code is\\nvalidated from top to bottom and left to right.',\n",
       "  'start': 294.31,\n",
       "  'duration': 6.9},\n",
       " {'text': 'With that said, let me show you my code that\\nreturns the top 5 selling products.',\n",
       "  'start': 301.21,\n",
       "  'duration': 4.22},\n",
       " {'text': 'I grouped our dataframe by Product and, following\\nthat, specified the aggregation mode.',\n",
       "  'start': 305.43,\n",
       "  'duration': 5.04},\n",
       " {'text': 'This next part is pretty cool; instead of\\nhardcoding the aggregation method, I linked',\n",
       "  'start': 310.47,\n",
       "  'duration': 5.789},\n",
       " {'text': 'it to cell C7.', 'start': 316.259, 'duration': 1.341},\n",
       " {'text': 'I named this cell \"Calc_Method\".',\n",
       "  'start': 317.6,\n",
       "  'duration': 2.37},\n",
       " {'text': 'This is pretty neat because now you can combine\\nthe flexibility of Excel with Python.',\n",
       "  'start': 319.97,\n",
       "  'duration': 4.73},\n",
       " {'text': 'So, before I linked it, I hardcoded the aggregation\\nmethod sum in my Pandas code.',\n",
       "  'start': 324.7,\n",
       "  'duration': 5.279},\n",
       " {'text': 'I then inserted a drop-down menu and named\\nthe cell \"Calc_Method\".',\n",
       "  'start': 329.979,\n",
       "  'duration': 2.761},\n",
       " {'text': 'And now, in the Python code, you could just\\ntype out the cell reference, or if you delete',\n",
       "  'start': 332.74,\n",
       "  'duration': 6.79},\n",
       " {'text': 'it again, you could also just select the cell.',\n",
       "  'start': 339.53,\n",
       "  'duration': 3.28},\n",
       " {'text': 'And when I execute the code, it is calculated\\ncorrectly.',\n",
       "  'start': 342.81,\n",
       "  'duration': 2.97},\n",
       " {'text': 'Now, the cool part is that I just need to\\nchange this cell here, and then all my calculations',\n",
       "  'start': 345.78,\n",
       "  'duration': 5.67},\n",
       " {'text': 'will show the average sales amount.',\n",
       "  'start': 351.45,\n",
       "  'duration': 2.38},\n",
       " {'text': 'When I do this, you will also notice that\\nall my charts are also being updated.',\n",
       "  'start': 353.83,\n",
       "  'duration': 4.01},\n",
       " {'text': 'In fact, if we look at my chart for the top\\n5 selling products, you will see that I have',\n",
       "  'start': 357.84,\n",
       "  'duration': 4.919},\n",
       " {'text': 'done the same for the colours of the bars.',\n",
       "  'start': 362.759,\n",
       "  'duration': 2.561},\n",
       " {'text': 'This is linked to the following cell.',\n",
       "  'start': 365.32,\n",
       "  'duration': 2.07},\n",
       " {'text': \"Okay, I'll reduce the size of the formula\\nbar, and then from the drop-down menu, I'll\",\n",
       "  'start': 367.39,\n",
       "  'duration': 6.33},\n",
       " {'text': 'select another colour.', 'start': 373.72, 'duration': 1.52},\n",
       " {'text': 'Doing so will change the colours of the bars.',\n",
       "  'start': 375.24,\n",
       "  'duration': 3.57},\n",
       " {'text': 'For the next analysis, I will group the sales\\nby weekday.',\n",
       "  'start': 378.81,\n",
       "  'duration': 3.37},\n",
       " {'text': 'Doing this in Pandas is actually not too complicated.',\n",
       "  'start': 382.18,\n",
       "  'duration': 3.26},\n",
       " {'text': \"On the dataframe, I'll create a new column\\nusing the assign method.\",\n",
       "  'start': 385.44,\n",
       "  'duration': 2.991},\n",
       " {'text': \"The new column will be named 'weekday', and\\nI'll extract the weekday from the date column.\",\n",
       "  'start': 388.431,\n",
       "  'duration': 5.208},\n",
       " {'text': \"I'll then group the data by this new column,\\naggregate the sales, and rename and reset\",\n",
       "  'start': 393.639,\n",
       "  'duration': 5.351},\n",
       " {'text': 'the index.', 'start': 398.99, 'duration': 1.36},\n",
       " {'text': \"And another quick note here: I'm using a lot\\nof pandas steps one after the other.\",\n",
       "  'start': 400.35,\n",
       "  'duration': 4.1},\n",
       " {'text': 'I think it makes the code easy to read.',\n",
       "  'start': 404.45,\n",
       "  'duration': 2.29},\n",
       " {'text': 'But if you like, you can do each step one\\nat a time.',\n",
       "  'start': 406.74,\n",
       "  'duration': 4.221},\n",
       " {'text': 'However, if you want to learn more about chaining\\ndifferent pandas methods, I suggest my following',\n",
       "  'start': 410.961,\n",
       "  'duration': 3.999},\n",
       " {'text': 'video.', 'start': 414.96, 'duration': 1.0},\n",
       " {'text': 'In that video, I will walk you through how\\nchain pandas methods and also explain why',\n",
       "  'start': 415.96,\n",
       "  'duration': 4.09},\n",
       " {'text': 'you might want to use that approach.',\n",
       "  'start': 420.05,\n",
       "  'duration': 1.89},\n",
       " {'text': \"I've put the link to that video in the info\\ncard above and in the description below.\",\n",
       "  'start': 421.94,\n",
       "  'duration': 4.17},\n",
       " {'text': 'Okay, so now that we have the sales grouped\\nby weekday, we can also plot it.',\n",
       "  'start': 426.11,\n",
       "  'duration': 4.929},\n",
       " {'text': 'For this, I wrote the code next to the table.',\n",
       "  'start': 431.039,\n",
       "  'duration': 2.75},\n",
       " {'text': \"And here is also a fun fact: I didn't write\\nall the code myself; I got help from ChatGPT.\",\n",
       "  'start': 433.789,\n",
       "  'duration': 5.331},\n",
       " {'text': 'OK, next up, I calculated sales by the hour.',\n",
       "  'start': 439.12,\n",
       "  'duration': 3.72},\n",
       " {'text': 'Again, not much pandas code is needed for\\nthis type of calculation.',\n",
       "  'start': 442.84,\n",
       "  'duration': 4.25},\n",
       " {'text': 'And if we look at the chart, most customers\\nseem to do their shopping after work, especially',\n",
       "  'start': 447.09,\n",
       "  'duration': 4.561},\n",
       " {'text': 'from 7 pm onwards.', 'start': 451.651, 'duration': 1.529},\n",
       " {'text': 'So, during these peak hours, we might need\\nadditional staff and cashiers.',\n",
       "  'start': 453.18,\n",
       "  'duration': 4.6},\n",
       " {'text': \"With that insight, let's move on to the next\\nanalysis.\",\n",
       "  'start': 457.78,\n",
       "  'duration': 2.44},\n",
       " {'text': 'Here, I utilized the pandas method \"percentage\\nchange\" to calculate the month-over-month',\n",
       "  'start': 460.22,\n",
       "  'duration': 5.06},\n",
       " {'text': 'growth rate.', 'start': 465.28, 'duration': 1.46},\n",
       " {'text': 'I then again asked ChatGPT to provide me with\\nthe code to plot the sales amount by month',\n",
       "  'start': 466.74,\n",
       "  'duration': 5.03},\n",
       " {'text': 'and, on the secondary axis, the growth rate.',\n",
       "  'start': 471.77,\n",
       "  'duration': 2.81},\n",
       " {'text': 'And as a result, I have got back the following\\nchart.',\n",
       "  'start': 474.58,\n",
       "  'duration': 3.679},\n",
       " {'text': 'Frankly speaking, I think using native Excel\\ncharts would have been quicker for this purpose.',\n",
       "  'start': 478.259,\n",
       "  'duration': 4.861},\n",
       " {'text': 'Also, all the charts I chose here are fairly\\nbasic.',\n",
       "  'start': 483.12,\n",
       "  'duration': 3.139},\n",
       " {'text': \"There's really no need to overcomplicate things\\nby using Python for this.\",\n",
       "  'start': 486.259,\n",
       "  'duration': 4.071},\n",
       " {'text': 'However, I will also demonstrate a scenario\\nwhere you might want to use a Python chart.',\n",
       "  'start': 490.33,\n",
       "  'duration': 5.96},\n",
       " {'text': 'For the following heatmap, I created a pivot\\ntable using pandas to display the sales amount',\n",
       "  'start': 496.29,\n",
       "  'duration': 5.379},\n",
       " {'text': 'by product line and month.', 'start': 501.669, 'duration': 1.74},\n",
       " {'text': 'I then plotted this new dataframe with a Seaborn\\nheatmap.',\n",
       "  'start': 503.409,\n",
       "  'duration': 3.711},\n",
       " {'text': 'The resulting chart has a colour scale: the\\ndarker the colour, the higher the sales.',\n",
       "  'start': 507.12,\n",
       "  'duration': 4.68},\n",
       " {'text': 'The y-axis represents the months, while the\\nx-axis displays the different product lines.',\n",
       "  'start': 511.8,\n",
       "  'duration': 5.919},\n",
       " {'text': 'And from this heatmap, we can see, that sales\\nfor groceries remain relatively consistent',\n",
       "  'start': 517.719,\n",
       "  'duration': 4.661},\n",
       " {'text': 'throughout the year, which is kind of expected.',\n",
       "  'start': 522.38,\n",
       "  'duration': 3.31},\n",
       " {'text': 'However, for the Electronics, we will notice\\nhigher sales in a specific month.',\n",
       "  'start': 525.69,\n",
       "  'duration': 3.769},\n",
       " {'text': 'So, we might want to dig deeper into these\\ninsights.',\n",
       "  'start': 529.459,\n",
       "  'duration': 3.07},\n",
       " {'text': 'So, this is just one example of a more advanced\\nchart that would be difficult to replicate',\n",
       "  'start': 532.529,\n",
       "  'duration': 5.071},\n",
       " {'text': 'in Excel.', 'start': 537.6, 'duration': 1.1},\n",
       " {'text': \"Obviously, you shouldn't just pick a chart\\nbecause it looks fancy.\",\n",
       "  'start': 538.7,\n",
       "  'duration': 3.92},\n",
       " {'text': 'It should simply convey the message of your\\ninsights.',\n",
       "  'start': 542.62,\n",
       "  'duration': 3.43},\n",
       " {'text': \"Now that you've seen some potential use cases\\nlet me share my thoughts about running Python\",\n",
       "  'start': 546.05,\n",
       "  'duration': 4.4},\n",
       " {'text': 'code in Excel.', 'start': 550.45, 'duration': 1.04},\n",
       " {'text': \"In general, I think, it's fantastic that you\\ncan now integrate Python with Excel.\",\n",
       "  'start': 551.49,\n",
       "  'duration': 3.86},\n",
       " {'text': 'This just adds another tool to your toolbox.',\n",
       "  'start': 555.35,\n",
       "  'duration': 3.21},\n",
       " {'text': 'Especially when dealing with dates and times,\\ncertain calculations are much more straightforward',\n",
       "  'start': 558.56,\n",
       "  'duration': 4.019},\n",
       " {'text': 'in pandas, at least in my opinion.',\n",
       "  'start': 562.579,\n",
       "  'duration': 2.611},\n",
       " {'text': 'However, Excel also offers another powerful\\ntool for data cleaning and aggregation: PowerQuery.',\n",
       "  'start': 565.19,\n",
       "  'duration': 5.9},\n",
       " {'text': \"If you've worked with PowerQuery before, you'll\\nknow its capabilities.\",\n",
       "  'start': 571.09,\n",
       "  'duration': 4.27},\n",
       " {'text': \"Also, even though I'm not a beginner with\\npandas, I often need to test my code and tinker\",\n",
       "  'start': 575.36,\n",
       "  'duration': 5.37},\n",
       " {'text': 'around with it.', 'start': 580.73, 'duration': 1.29},\n",
       " {'text': \"And I've noticed that the more Python calculations\\nyou have in your spreadsheet, the slower the\",\n",
       "  'start': 582.02,\n",
       "  'duration': 5.059},\n",
       " {'text': 'calculation becomes.', 'start': 587.079, 'duration': 1.311},\n",
       " {'text': 'So, I find it rather clunky to do my exploratory\\ndata analysis directly in Excel.',\n",
       "  'start': 588.39,\n",
       "  'duration': 5.79},\n",
       " {'text': \"Instead, I've been turning to a Jupyter Notebook.\",\n",
       "  'start': 594.18,\n",
       "  'duration': 3.0},\n",
       " {'text': 'Once I tested my code in a Jupyter Notebook,\\nI plugged it into Excel.',\n",
       "  'start': 597.18,\n",
       "  'duration': 4.27},\n",
       " {'text': 'Now, to quickly get the Excel data into a\\nJupyter Notebook, I created my own add-in,',\n",
       "  'start': 601.45,\n",
       "  'duration': 5.11},\n",
       " {'text': 'which is called \"MyToolBelt\".', 'start': 606.56, 'duration': 1.0},\n",
       " {'text': 'With it, I just click a button, select the\\ncell range I want to analyze, provide a title',\n",
       "  'start': 607.56,\n",
       "  'duration': 6.26},\n",
       " {'text': \"if I wish, and then hit 'OK'.\", 'start': 613.82, 'duration': 2.66},\n",
       " {'text': \"This action generates a new Jupyter Notebook\\nin my workbook's directory.\",\n",
       "  'start': 616.48,\n",
       "  'duration': 3.19},\n",
       " {'text': 'When I open it, I have my title, library imports,\\nand the respective code to load the Excel',\n",
       "  'start': 619.67,\n",
       "  'duration': 6.94},\n",
       " {'text': 'data as a pandas dataframe – with the correct\\npath to the spreadsheet, sheet name, columns,',\n",
       "  'start': 626.61,\n",
       "  'duration': 5.56},\n",
       " {'text': 'and row count.', 'start': 632.17, 'duration': 1.05},\n",
       " {'text': 'So, with this add-in, I can speed up my analysis,\\nand now I also have a clear separation between',\n",
       "  'start': 633.22,\n",
       "  'duration': 5.14},\n",
       " {'text': 'my data and the code I write.', 'start': 638.36, 'duration': 2.86},\n",
       " {'text': \"If you also want to install the add-in, I'll\\ndrop a link in the description below.\",\n",
       "  'start': 641.22,\n",
       "  'duration': 3.66},\n",
       " {'text': \"However, it's worth noting that the Jupyter\\nNotebook feature is only available in the\",\n",
       "  'start': 644.88,\n",
       "  'duration': 4.26},\n",
       " {'text': 'paid version.', 'start': 649.14, 'duration': 1.0},\n",
       " {'text': \"Now, let's get back to native Python functionality\\nin Excel.\",\n",
       "  'start': 650.14,\n",
       "  'duration': 4.28},\n",
       " {'text': 'In this video, I showcased examples using\\npandas, matplotlib, and seaborn.',\n",
       "  'start': 654.42,\n",
       "  'duration': 4.52},\n",
       " {'text': 'However, you can also access additional packages\\navailable in the Anaconda distribution, like',\n",
       "  'start': 658.94,\n",
       "  'duration': 5.8},\n",
       " {'text': 'statsmodels, scipy, and scikit-learn.',\n",
       "  'start': 664.74,\n",
       "  'duration': 2.31},\n",
       " {'text': 'By default, many of these packages are directly\\nloaded when initializing the environment.',\n",
       "  'start': 667.05,\n",
       "  'duration': 5.339},\n",
       " {'text': \"That's why, in my example, I didn't need to\\nimport the libraries separately.\",\n",
       "  'start': 672.389,\n",
       "  'duration': 4.88},\n",
       " {'text': 'So, in my upcoming videos, I also want to\\nexplore the possibilities of using basic machine',\n",
       "  'start': 677.269,\n",
       "  'duration': 5.161},\n",
       " {'text': 'learning with scikit-learn directly in Excel.',\n",
       "  'start': 682.43,\n",
       "  'duration': 3.19},\n",
       " {'text': \"Because those types of calculations can't\\nbe done with PowerQuery.\",\n",
       "  'start': 685.62,\n",
       "  'duration': 3.82},\n",
       " {'text': 'And speaking of PowerQuery, you can actually\\nalso connect Python to your PowerQuery tables,',\n",
       "  'start': 689.44,\n",
       "  'duration': 5.57},\n",
       " {'text': \"something I haven't shown in this video.\",\n",
       "  'start': 695.01,\n",
       "  'duration': 1.699},\n",
       " {'text': 'Lastly, before you go, let me highlight some\\nlimitations.',\n",
       "  'start': 696.709,\n",
       "  'duration': 3.781},\n",
       " {'text': \"As of now, animated Python charts like those\\nfrom Plotly aren't supported.\",\n",
       "  'start': 700.49,\n",
       "  'duration': 4.99},\n",
       " {'text': 'Also, the Python functionality is currently\\nexclusive to Excel Desktop 365 Beta Channel',\n",
       "  'start': 705.48,\n",
       "  'duration': 6.67},\n",
       " {'text': 'users, and it only works on Windows at the\\nmoment.',\n",
       "  'start': 712.15,\n",
       "  'duration': 3.52},\n",
       " {'text': 'Another constraint is that you cannot connect\\nto external files using Python; so, if you',\n",
       "  'start': 715.67,\n",
       "  'duration': 5.469},\n",
       " {'text': \"want to connect to other files and folders,\\nyou'd need to use PowerQuery.\",\n",
       "  'start': 721.139,\n",
       "  'duration': 4.82},\n",
       " {'text': 'Moreover, only the libraries supported by\\nAnaconda are available for use.',\n",
       "  'start': 725.959,\n",
       "  'duration': 4.861},\n",
       " {'text': \"So, if there's a 3rd party package that isn't\\npart of the Anaconda distribution, you won't\",\n",
       "  'start': 730.82,\n",
       "  'duration': 5.11},\n",
       " {'text': 'be able to use it.', 'start': 735.93, 'duration': 1.77},\n",
       " {'text': \"With that said, I'd love to hear your thoughts\\non this new functionality.\",\n",
       "  'start': 737.7,\n",
       "  'duration': 2.87},\n",
       " {'text': 'Please share them in the comments below.',\n",
       "  'start': 740.57,\n",
       "  'duration': 1.87},\n",
       " {'text': \"And as always, thanks for watching, and I'll\\nsee you in the next video.\",\n",
       "  'start': 742.44,\n",
       "  'duration': 20.29}]"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from youtube_transcript_api import YouTubeTranscriptApi\n",
    "video_id = \"bcYwiwsDfGE\"\n",
    "transcript = YouTubeTranscriptApi.get_transcript(video_id)\n",
    "transcript"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "baeae965",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'Okay, some of you might have heard already,\\nbut you can now use Python inside Excel. In this video, I will show some basic examples\\nof how to use it, and I\\'ll guide you through a real-world example to give you an idea of\\nthe possibilities. In that example, I\\'ll show you some very useful\\npandas features and some more advanced charts. Towards the end, I\\'ll also share my personal\\nopinion about this new feature and point out some limitations. But, before we start, a quick shout-out to\\nLuke. Luke was kind enough to connect me with people\\nfrom Anaconda so that I could test this feature. So, thank you very much, Luke and the team\\nfrom Anaconda. And with that said, let\\'s dive in. Ok, let\\'s start with a basic example. Under the formulas ribbon, there\\'s a new Python\\nsection. When I click on the Python logo, you\\'ll notice\\nthat the appearance of the formula bar changes. This is where you can now write your Python\\ncode. For the first step, I\\'ll create a dataframe\\nwith the command \"df is equal to\", and then simply select my Excel table here on the left. It doesn\\'t have to be a table, by the way;\\na normal cell range will also work. To execute the code, I will press Ctrl + Enter. If you just press Enter, it will insert a\\nnew line. So now, the data source is now your table. In my case, the table is named IrisDataSet,\\nand as it is correctly recognized, it has a header row. In the cell where I wrote the Python code,\\nthe dataframe object now appears. So, as you might already know, everything\\nin Python is an object, and we can store that object in a cell. I can also get a preview of what the dataframe\\nlooks like when I click on the icon. It gives me a preview of the dataframe. Now that we have our dataframe, you can use\\nall the different Pandas functions. I named my dataframe \\'df\\', so in the next\\ncell, I just need to type \\'df\\'. And for this example, I will use the \\'describe\\'\\nmethod to get some statistical insights into the data. When I execute the cell using Ctrl + Enter,\\nExcel returns the object. In this case, the \\'describe\\' method returns\\na dataframe. If you actually want to print the dataframe\\nto Excel, you can select \"Excel value\" from the drop-down list. You\\'ll then see a statistical summary of the\\ndata directly in Excel. Likewise, I will calculate the correlation. But this time, instead of using my \\'df\\' variable,\\nI will refer to the cell that holds the dataframe object, which is H2 in my case. Then, on my dataframe object, I can call the\\ncorrelation method. As before, we get a dataframe in return. However, I will adjust the output to insert\\nthe data into the spreadsheet. Okay, now let\\'s proceed to some basic plots. With the integration of Python, we can tap\\ninto various plotting libraries. For my demonstration, I will use matplotlib\\nto craft a scatter plot. When I run the code, it returns an image object. However, as with the earlier examples, I want\\nto display the actual chart. So, I just need to switch the output. As a result, we have an image stored in a\\ncell. You can right-click on this image to create\\na reference to the cell. And now, we have an Excel image with our scatter\\nplot. Next, I plan to generate a Seaborn pair plot,\\nwhich only requires one line of code. The execution of this cell might take a moment,\\nbut once complete, it also returns an image object. Similar to before, I\\'ll create a reference\\nfor this image. And there we have it: our pair plot. This is particularly useful for visualizing\\nthe linear correlation among all dataset variables and displaying the distribution. Lastly, I will generate a linear regression\\nplot for two distinct variables. Once again, in Seaborn, we only need one line\\nof code for this. Okay, so those were some basic examples that\\ngive some general idea of this new feature. Now, let us move on to a real-world example. Here in the datasheet, I have a transaction\\ntable of sales for five different stores in Japan. We have there the City where the store is\\nlocated, the information of the customer, so, if the customer was a member or not and\\nthe gender of the customer. Next, we have the information about the product\\nline, unit price, quantity, date and time of the purchase, the payment method, the rating\\nfrom the customer and the sales amount, which is the unit price multiplied by the quantity. As before, this data is an Excel table; I\\nnamed it \"table Sales\". Okay, now I\\'ve taken this data and conducted\\nsome analysis using Python. First, I loaded the dataframe and named it\\n\"data\". After loading the data, there wasn\\'t much\\ncleanup needed. The main task was converting the date and\\ntime column into a DateTime object, which is required for my time and date-based analysis. And there\\'s also an important hint: the cleanup\\nprocess is in a cell below the actual dataframe. This is important because I refer to the \\'data\\'\\nvariable, which should be defined in a cell above my current one, as the Python code is\\nvalidated from top to bottom and left to right. With that said, let me show you my code that\\nreturns the top 5 selling products. I grouped our dataframe by Product and, following\\nthat, specified the aggregation mode. This next part is pretty cool; instead of\\nhardcoding the aggregation method, I linked it to cell C7. I named this cell \"Calc_Method\". This is pretty neat because now you can combine\\nthe flexibility of Excel with Python. So, before I linked it, I hardcoded the aggregation\\nmethod sum in my Pandas code. I then inserted a drop-down menu and named\\nthe cell \"Calc_Method\". And now, in the Python code, you could just\\ntype out the cell reference, or if you delete it again, you could also just select the cell. And when I execute the code, it is calculated\\ncorrectly. Now, the cool part is that I just need to\\nchange this cell here, and then all my calculations will show the average sales amount. When I do this, you will also notice that\\nall my charts are also being updated. In fact, if we look at my chart for the top\\n5 selling products, you will see that I have done the same for the colours of the bars. This is linked to the following cell. Okay, I\\'ll reduce the size of the formula\\nbar, and then from the drop-down menu, I\\'ll select another colour. Doing so will change the colours of the bars. For the next analysis, I will group the sales\\nby weekday. Doing this in Pandas is actually not too complicated. On the dataframe, I\\'ll create a new column\\nusing the assign method. The new column will be named \\'weekday\\', and\\nI\\'ll extract the weekday from the date column. I\\'ll then group the data by this new column,\\naggregate the sales, and rename and reset the index. And another quick note here: I\\'m using a lot\\nof pandas steps one after the other. I think it makes the code easy to read. But if you like, you can do each step one\\nat a time. However, if you want to learn more about chaining\\ndifferent pandas methods, I suggest my following video. In that video, I will walk you through how\\nchain pandas methods and also explain why you might want to use that approach. I\\'ve put the link to that video in the info\\ncard above and in the description below. Okay, so now that we have the sales grouped\\nby weekday, we can also plot it. For this, I wrote the code next to the table. And here is also a fun fact: I didn\\'t write\\nall the code myself; I got help from ChatGPT. OK, next up, I calculated sales by the hour. Again, not much pandas code is needed for\\nthis type of calculation. And if we look at the chart, most customers\\nseem to do their shopping after work, especially from 7 pm onwards. So, during these peak hours, we might need\\nadditional staff and cashiers. With that insight, let\\'s move on to the next\\nanalysis. Here, I utilized the pandas method \"percentage\\nchange\" to calculate the month-over-month growth rate. I then again asked ChatGPT to provide me with\\nthe code to plot the sales amount by month and, on the secondary axis, the growth rate. And as a result, I have got back the following\\nchart. Frankly speaking, I think using native Excel\\ncharts would have been quicker for this purpose. Also, all the charts I chose here are fairly\\nbasic. There\\'s really no need to overcomplicate things\\nby using Python for this. However, I will also demonstrate a scenario\\nwhere you might want to use a Python chart. For the following heatmap, I created a pivot\\ntable using pandas to display the sales amount by product line and month. I then plotted this new dataframe with a Seaborn\\nheatmap. The resulting chart has a colour scale: the\\ndarker the colour, the higher the sales. The y-axis represents the months, while the\\nx-axis displays the different product lines. And from this heatmap, we can see, that sales\\nfor groceries remain relatively consistent throughout the year, which is kind of expected. However, for the Electronics, we will notice\\nhigher sales in a specific month. So, we might want to dig deeper into these\\ninsights. So, this is just one example of a more advanced\\nchart that would be difficult to replicate in Excel. Obviously, you shouldn\\'t just pick a chart\\nbecause it looks fancy. It should simply convey the message of your\\ninsights. Now that you\\'ve seen some potential use cases\\nlet me share my thoughts about running Python code in Excel. In general, I think, it\\'s fantastic that you\\ncan now integrate Python with Excel. This just adds another tool to your toolbox. Especially when dealing with dates and times,\\ncertain calculations are much more straightforward in pandas, at least in my opinion. However, Excel also offers another powerful\\ntool for data cleaning and aggregation: PowerQuery. If you\\'ve worked with PowerQuery before, you\\'ll\\nknow its capabilities. Also, even though I\\'m not a beginner with\\npandas, I often need to test my code and tinker around with it. And I\\'ve noticed that the more Python calculations\\nyou have in your spreadsheet, the slower the calculation becomes. So, I find it rather clunky to do my exploratory\\ndata analysis directly in Excel. Instead, I\\'ve been turning to a Jupyter Notebook. Once I tested my code in a Jupyter Notebook,\\nI plugged it into Excel. Now, to quickly get the Excel data into a\\nJupyter Notebook, I created my own add-in, which is called \"MyToolBelt\". With it, I just click a button, select the\\ncell range I want to analyze, provide a title if I wish, and then hit \\'OK\\'. This action generates a new Jupyter Notebook\\nin my workbook\\'s directory. When I open it, I have my title, library imports,\\nand the respective code to load the Excel data as a pandas dataframe – with the correct\\npath to the spreadsheet, sheet name, columns, and row count. So, with this add-in, I can speed up my analysis,\\nand now I also have a clear separation between my data and the code I write. If you also want to install the add-in, I\\'ll\\ndrop a link in the description below. However, it\\'s worth noting that the Jupyter\\nNotebook feature is only available in the paid version. Now, let\\'s get back to native Python functionality\\nin Excel. In this video, I showcased examples using\\npandas, matplotlib, and seaborn. However, you can also access additional packages\\navailable in the Anaconda distribution, like statsmodels, scipy, and scikit-learn. By default, many of these packages are directly\\nloaded when initializing the environment. That\\'s why, in my example, I didn\\'t need to\\nimport the libraries separately. So, in my upcoming videos, I also want to\\nexplore the possibilities of using basic machine learning with scikit-learn directly in Excel. Because those types of calculations can\\'t\\nbe done with PowerQuery. And speaking of PowerQuery, you can actually\\nalso connect Python to your PowerQuery tables, something I haven\\'t shown in this video. Lastly, before you go, let me highlight some\\nlimitations. As of now, animated Python charts like those\\nfrom Plotly aren\\'t supported. Also, the Python functionality is currently\\nexclusive to Excel Desktop 365 Beta Channel users, and it only works on Windows at the\\nmoment. Another constraint is that you cannot connect\\nto external files using Python; so, if you want to connect to other files and folders,\\nyou\\'d need to use PowerQuery. Moreover, only the libraries supported by\\nAnaconda are available for use. So, if there\\'s a 3rd party package that isn\\'t\\npart of the Anaconda distribution, you won\\'t be able to use it. With that said, I\\'d love to hear your thoughts\\non this new functionality. Please share them in the comments below. And as always, thanks for watching, and I\\'ll\\nsee you in the next video.'"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "transcript = \" \".join([item[\"text\"] for item in transcript])\n",
    "transcript"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0b44040c",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "id": "29bb8efa",
   "metadata": {},
   "source": [
    "## 3. Feed video captions into LLM (OpenAI)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "ad82f2d3",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'str'>\n",
      "[\n",
      "    [\"What is the purpose of the video?\", \"To demonstrate how to use Python inside Excel\", \"To explain the limitations of using Python in Excel\", \"To showcase different data visualization libraries\"],\n",
      "    [\"What is the advantage of using pandas in Python?\", \"It makes certain calculations with dates and times easier\", \"It allows for the creation of fancy charts\", \"It speeds up the calculation process in Excel\"],\n",
      "    [\"How can you display a statistical summary of a dataframe in Excel?\", \"By selecting 'Excel value' from the drop-down list\", \"By clicking on the preview icon\", \"By right-clicking on the dataframe object\"],\n",
      "    [\"What is the purpose of the 'Calc_Method' cell?\", \"To specify the aggregation method for the top 5 selling products\", \"To determine the color scheme for the charts\", \"To calculate the month-over-month growth rate\"],\n",
      "    [\"What are some limitations of using Python in Excel?\", \"Animated charts and external file connections are not supported\", \"It only works on Windows and with Excel Desktop 365 Beta Channel\", \"Only libraries supported by Anaconda can be used\"]\n",
      "]\n"
     ]
    }
   ],
   "source": [
    "from langchain.chat_models import ChatOpenAI\n",
    "from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate\n",
    "from langchain.chains import LLMChain\n",
    "\n",
    "#########################################\n",
    "OPENAI_API_KEY = \"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\"\n",
    "#########################################\n",
    "\n",
    "\n",
    "template = f\"\"\"\n",
    "You are a helpful assistant programmed to generate questions based on any text provided. For every chunk of text you receive, you're tasked with designing 5 distinct questions. Each of these questions will be accompanied by 3 possible answers: one correct answer and two incorrect ones. \n",
    "\n",
    "For clarity and ease of processing, structure your response in a way that emulates a Python list of lists. \n",
    "\n",
    "Your output should be shaped as follows:\n",
    "\n",
    "1. An outer list that contains 5 inner lists.\n",
    "2. Each inner list represents a set of question and answers, and contains exactly 4 strings in this order:\n",
    "- The generated question.\n",
    "- The correct answer.\n",
    "- The first incorrect answer.\n",
    "- The second incorrect answer.\n",
    "\n",
    "Your output should mirror this structure:\n",
    "[\n",
    "    [\"Generated Question 1\", \"Correct Answer 1\", \"Incorrect Answer 1.1\", \"Incorrect Answer 1.2\"],\n",
    "    [\"Generated Question 2\", \"Correct Answer 2\", \"Incorrect Answer 2.1\", \"Incorrect Answer 2.2\"],\n",
    "    ...\n",
    "]\n",
    "\n",
    "It is crucial that you adhere to this format as it's optimized for further Python processing.\n",
    "\n",
    "\"\"\"\n",
    "\n",
    "system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n",
    "human_message_prompt = HumanMessagePromptTemplate.from_template(\"{text}\")\n",
    "chat_prompt = ChatPromptTemplate.from_messages(\n",
    "    [system_message_prompt, human_message_prompt]\n",
    ")\n",
    "chain = LLMChain(\n",
    "    llm=ChatOpenAI(openai_api_key=OPENAI_API_KEY),\n",
    "    prompt=chat_prompt,\n",
    ")\n",
    "quiz_data = chain.run(transcript)\n",
    "print(type(quiz_data))\n",
    "print(quiz_data)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "033e47fa",
   "metadata": {},
   "source": [
    "## 4. Transform output"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "b062f162",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'list'>\n",
      "[['What is the purpose of the video?', 'To demonstrate how to use Python inside Excel', 'To explain the limitations of using Python in Excel', 'To showcase different data visualization libraries'], ['What is the advantage of using pandas in Python?', 'It makes certain calculations with dates and times easier', 'It allows for the creation of fancy charts', 'It speeds up the calculation process in Excel'], ['How can you display a statistical summary of a dataframe in Excel?', \"By selecting 'Excel value' from the drop-down list\", 'By clicking on the preview icon', 'By right-clicking on the dataframe object'], [\"What is the purpose of the 'Calc_Method' cell?\", 'To specify the aggregation method for the top 5 selling products', 'To determine the color scheme for the charts', 'To calculate the month-over-month growth rate'], ['What are some limitations of using Python in Excel?', 'Animated charts and external file connections are not supported', 'It only works on Windows and with Excel Desktop 365 Beta Channel', 'Only libraries supported by Anaconda can be used']]\n"
     ]
    }
   ],
   "source": [
    "import ast\n",
    "\n",
    "quiz_data_clean = ast.literal_eval(quiz_data)\n",
    "print(type(quiz_data_clean))\n",
    "print(quiz_data_clean)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}